BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 30458213)

  • 1. The immobilization of Candida rugosa lipase on the modified polyethersulfone with MOF nanoparticles as an excellent performance bioreactor membrane.
    Zare A; Bordbar AK; Razmjou A; Jafarian F
    J Biotechnol; 2019 Jan; 289():55-63. PubMed ID: 30458213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and properties of lipase activated by cellulose-silica polyethersulfone membrane for production of pentyl valerate.
    Elias N; Wahab RA; Chandren S; Jamalis J; Mahat NA; Jye LW
    Carbohydr Polym; 2020 Oct; 245():116549. PubMed ID: 32718641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of the efficiency and stability of enzymatic membrane reaction utilizing lipase covalently immobilized on a functionalized hybrid membrane.
    Rezaie H; Kajani AA; Jafarian F; Asgari S; Taheri-Kafrani A; Bordbar AK
    J Biotechnol; 2024 May; 387():23-31. PubMed ID: 38548020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Candida rugosa lipase immobilization on hydrophilic charged gold nanoparticles as promising biocatalysts: Activity and stability investigations.
    Venditti I; Palocci C; Chronopoulou L; Fratoddi I; Fontana L; Diociaiuti M; Russo MV
    Colloids Surf B Biointerfaces; 2015 Jul; 131():93-101. PubMed ID: 25969418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilization of Candida rugosa lipase on superparamagnetic Fe3O4 nanoparticles for biocatalysis in low-water media.
    Mukherjee J; Solanki K; Gupta MN
    Methods Mol Biol; 2013; 1051():117-27. PubMed ID: 23934801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of Carriers Based on ZnO Nanoparticles Decorated on Graphene Oxide (GO) Nanosheets for Efficient Immobilization of Lipase from Candida rugosa.
    Zhang S; Shi J; Deng Q; Zheng M; Wan C; Zheng C; Li Y; Huang F
    Molecules; 2017 Jul; 22(7):. PubMed ID: 28753931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipase immobilized catalytically active membrane for synthesis of lauryl stearate in a pervaporation membrane reactor.
    Zhang W; Qing W; Ren Z; Li W; Chen J
    Bioresour Technol; 2014 Nov; 172():16-21. PubMed ID: 25218626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of transglutaminase (TG) immobilization on the surface of polyethersulfone ultrafiltration membrane and its characteristics in a membrane reactor.
    Wen-Qiong W; Xiao-Feng Z
    J Biotechnol; 2018 Dec; 287():41-51. PubMed ID: 30312635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of core-shell magnetic polydopamine/alginate biocomposite for Candida rugosa lipase immobilization.
    Hou C; Qi Z; Zhu H
    Colloids Surf B Biointerfaces; 2015 Apr; 128():544-551. PubMed ID: 25784302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The performance of immobilized Candida rugosa lipase on various surface modified graphene oxide nanosheets.
    Jafarian F; Bordbar AK; Zare A; Khosropour A
    Int J Biol Macromol; 2018 May; 111():1166-1174. PubMed ID: 29371152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remarkably enhanced activity and substrate affinity of lipase covalently bonded on zwitterionic polymer-grafted silica nanoparticles.
    Zhang C; Dong X; Guo Z; Sun Y
    J Colloid Interface Sci; 2018 Jun; 519():145-153. PubMed ID: 29494877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surfactant-based metal-organic frameworks (MOFs) in the preparation of an active biocatalysis.
    Ozyilmaz E; Kocer MB; Caglar O; Yildirim A; Yilmaz M
    J Biotechnol; 2023 Jul; 371-372():10-21. PubMed ID: 37301292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of biocompatible immobilized Candida rugosa lipase with potential application in food industry.
    Trbojević Ivić J; Veličković D; Dimitrijević A; Bezbradica D; Dragačević V; Gavrović Jankulović M; Milosavić N
    J Sci Food Agric; 2016 Sep; 96(12):4281-7. PubMed ID: 26801832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-Immobilization of Enzymes and Magnetic Nanoparticles by Metal-Nucleotide Hydrogelnanofibers for Improving Stability and Recycling.
    Li C; Jiang S; Zhao X; Liang H
    Molecules; 2017 Jan; 22(1):. PubMed ID: 28125003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilization of lipase on carboxylic acid-modified silica nanoparticles for olive oil glycerolysis.
    Singh AK; Mukhopadhyay M
    Bioprocess Biosyst Eng; 2018 Jan; 41(1):115-127. PubMed ID: 29043450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of porous hollow Fe
    Liu X
    Bioprocess Biosyst Eng; 2018 Jun; 41(6):771-779. PubMed ID: 29442184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobilization of lipase by ultrafiltration and cross-linking onto the polysulfone membrane surface.
    Yujun W; Jian X; Guangsheng L; Youyuan D
    Bioresour Technol; 2008 May; 99(7):2299-303. PubMed ID: 17591438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization, optimization and stability studies on Candida rugosa lipase supported on nanocellulose reinforced chitosan prepared from oil palm biomass.
    Elias N; Chandren S; Razak FIA; Jamalis J; Widodo N; Wahab RA
    Int J Biol Macromol; 2018 Jul; 114():306-316. PubMed ID: 29578010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and characterization of immobilized biocatalyst with lipase activity onto magnetic magnesium spinel nanoparticles: A novel platform for biocatalysis.
    Romero CM; Spuches FC; Morales AH; Perotti NI; Navarro MC; Gómez MI
    Colloids Surf B Biointerfaces; 2018 Dec; 172():699-707. PubMed ID: 30245295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Covalent immobilization of lipase from Candida rugosa onto poly(acrylonitrile-co-2-hydroxyethyl methacrylate) electrospun fibrous membranes for potential bioreactor application.
    Huang XJ; Yu AG; Xu ZK
    Bioresour Technol; 2008 Sep; 99(13):5459-65. PubMed ID: 18248984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.