BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 30458369)

  • 1. Prediction of residual film perception of cosmetic products using an instrumental method and non-biological surfaces: The example of stickiness after skin application.
    Eudier F; Hirel D; Grisel M; Picard C; Savary G
    Colloids Surf B Biointerfaces; 2019 Feb; 174():181-188. PubMed ID: 30458369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Instrumental and sensory methodologies to characterize the residual film of topical products applied to skin.
    Savary G; Gilbert L; Grisel M; Picard C
    Skin Res Technol; 2019 Jul; 25(4):415-423. PubMed ID: 30767275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurements meet perceptions: rheology-texture-sensory relations when using green, bio-derived emollients in cosmetic emulsions.
    Huynh A; Garcia AG; Young LK; Szoboszlai M; Liberatore MW; Baki G
    Int J Cosmet Sci; 2021 Feb; 43(1):11-19. PubMed ID: 32886359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation between sensory and instrumental characterization of developed sunscreens containing grape seed extract and a commercial product.
    Yarovaya L; Waranuch N; Wisuitiprot W; Khunkitti W
    Int J Cosmet Sci; 2022 Oct; 44(5):569-587. PubMed ID: 35975647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of emollients on the spreading properties of cosmetic products: a combined sensory and instrumental characterization.
    Savary G; Grisel M; Picard C
    Colloids Surf B Biointerfaces; 2013 Feb; 102():371-8. PubMed ID: 23174669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensory and instrumental characterization of fast inverting oil-in-water emulsions for cosmetic application.
    Korać R; Krajišnik D; Milić J
    Int J Cosmet Sci; 2016 Jun; 38(3):246-56. PubMed ID: 26444550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining sensory and texturometer parameters to characterize different type of cosmetic ingredients.
    Vieira GS; Lavarde M; Fréville V; Rocha-Filho PA; Pensé-Lhéritier AM
    Int J Cosmet Sci; 2020 Apr; 42(2):156-166. PubMed ID: 32196689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of friction and perceived skin feel after application of suspensions of various cosmetic powders.
    Timm K; Myant C; Nuguid H; Spikes HA; Grunze M
    Int J Cosmet Sci; 2012 Oct; 34(5):458-65. PubMed ID: 22738090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting lipstick sensory properties with laboratory tests.
    Rafferty DW; Dupin L; Zellia J; Giovannitti-Jensen A
    Int J Cosmet Sci; 2018 Oct; 40(5):451-460. PubMed ID: 30047990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wetting and adhesion evaluation of cosmetic ingredients and products: correlation of in vitro-in vivo contact angle measurements.
    Capra P; Musitelli G; Perugini P
    Int J Cosmet Sci; 2017 Aug; 39(4):393-401. PubMed ID: 28067963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complementary approaches to understand the spreading behavior on skin of O/W emulsions containing different emollientss.
    Gore E; Picard C; Savary G
    Colloids Surf B Biointerfaces; 2020 Sep; 193():111132. PubMed ID: 32446159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Final amended report on the safety assessment of Methylparaben, Ethylparaben, Propylparaben, Isopropylparaben, Butylparaben, Isobutylparaben, and Benzylparaben as used in cosmetic products.
    Int J Toxicol; 2008; 27 Suppl 4():1-82. PubMed ID: 19101832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal Texture Profile and Identification of Glass Transition Temperature as an Instrumental Predictor of Stickiness in a Caramel System.
    Mayhew EJ; Schmidt SJ; Schlich P; Lee SY
    J Food Sci; 2017 Sep; 82(9):2167-2176. PubMed ID: 28796325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of nanoencapsulation on the sensory properties of cosmetic formulations containing lipoic acid.
    Külkamp-Guerreiro IC; Berlitz SJ; Contri RV; Alves LR; Henrique EG; Barreiros VR; Guterres SS
    Int J Cosmet Sci; 2013 Feb; 35(1):105-11. PubMed ID: 23075068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of wall slip, thixotropy and lubrication regime on the instrumental sensory evaluation of topical formulations.
    Cyriac F; Xin Yi T; Chow PS
    Int J Cosmet Sci; 2022 Jun; 44(3):271-288. PubMed ID: 35357712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between sensorial and physical characteristics of topical creams: A comparative study on effects of excipients.
    Ali A; Skedung L; Burleigh S; Lavant E; Ringstad L; Anderson CD; Wahlgren M; Engblom J
    Int J Pharm; 2022 Feb; 613():121370. PubMed ID: 34952146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of the synergistic interaction between xanthan and galactomannan on the stickiness properties of residual film after application on a surface.
    Poret F; Cordinier A; Hucher N; Grisel M; Savary G
    Carbohydr Polym; 2021 Mar; 255():117500. PubMed ID: 33436254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling and Classification of Apple Textural Attributes Using Sensory, Instrumental and Compositional Analyses.
    Bejaei M; Stanich K; Cliff MA
    Foods; 2021 Feb; 10(2):. PubMed ID: 33578667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of sensory properties of emollients used in cosmetics and their correlation with physicochemical properties.
    Parente ME; Gámbaro A; Solana G
    J Cosmet Sci; 2005; 56(3):175-82. PubMed ID: 16116522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Texture analysis of cosmetic/pharmaceutical raw materials and formulations.
    Tai A; Bianchini R; Jachowicz J
    Int J Cosmet Sci; 2014 Aug; 36(4):291-304. PubMed ID: 24575934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.