These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
398 related articles for article (PubMed ID: 30458637)
1. Emerging role of SIRT3 in mitochondrial dysfunction and cardiovascular diseases. Wu J; Zeng Z; Zhang W; Deng Z; Wan Y; Zhang Y; An S; Huang Q; Chen Z Free Radic Res; 2019 Feb; 53(2):139-149. PubMed ID: 30458637 [TBL] [Abstract][Full Text] [Related]
2. SIRT3: A New Regulator of Cardiovascular Diseases. Sun W; Liu C; Chen Q; Liu N; Yan Y; Liu B Oxid Med Cell Longev; 2018; 2018():7293861. PubMed ID: 29643974 [TBL] [Abstract][Full Text] [Related]
3. SIRT3 in cardiovascular diseases: Emerging roles and therapeutic implications. Lu Y; Wang YD; Wang XY; Chen H; Cai ZJ; Xiang MX Int J Cardiol; 2016 Oct; 220():700-5. PubMed ID: 27393852 [TBL] [Abstract][Full Text] [Related]
4. 2-APQC, a small-molecule activator of Sirtuin-3 (SIRT3), alleviates myocardial hypertrophy and fibrosis by regulating mitochondrial homeostasis. Peng F; Liao M; Jin W; Liu W; Li Z; Fan Z; Zou L; Chen S; Zhu L; Zhao Q; Zhan G; Ouyang L; Peng C; Han B; Zhang J; Fu L Signal Transduct Target Ther; 2024 May; 9(1):133. PubMed ID: 38744811 [TBL] [Abstract][Full Text] [Related]
5. SIRT3 in Cardiac Physiology and Disease. Koentges C; Bode C; Bugger H Front Cardiovasc Med; 2016; 3():38. PubMed ID: 27790619 [TBL] [Abstract][Full Text] [Related]
6. Sirtuin 3: Emerging therapeutic target for cardiovascular diseases. Cao M; Zhao Q; Sun X; Qian H; Lyu S; Chen R; Xia H; Yuan W Free Radic Biol Med; 2022 Feb; 180():63-74. PubMed ID: 35031448 [TBL] [Abstract][Full Text] [Related]
7. Mitochondrial Deacetylase Sirt3 Reduces Vascular Dysfunction and Hypertension While Sirt3 Depletion in Essential Hypertension Is Linked to Vascular Inflammation and Oxidative Stress. Dikalova AE; Pandey A; Xiao L; Arslanbaeva L; Sidorova T; Lopez MG; Billings FT; Verdin E; Auwerx J; Harrison DG; Dikalov SI Circ Res; 2020 Feb; 126(4):439-452. PubMed ID: 31852393 [TBL] [Abstract][Full Text] [Related]
8. Mitochondrial Hyperacetylation in the Failing Hearts of Obese Patients Mediated Partly by a Reduction in SIRT3: The Involvement of the Mitochondrial Permeability Transition Pore. Castillo EC; Morales JA; Chapoy-Villanueva H; Silva-Platas C; Treviño-Saldaña N; Guerrero-Beltrán CE; Bernal-Ramírez J; Torres-Quintanilla A; García N; Youker K; Torre-Amione G; García-Rivas G Cell Physiol Biochem; 2019; 53(3):465-479. PubMed ID: 31464387 [TBL] [Abstract][Full Text] [Related]
9. Receptor-interacting Protein 140 represses Sirtuin 3 to facilitate hypertrophy, mitochondrial dysfunction and energy metabolic dysfunction in cardiomyocytes. You J; Yue Z; Chen S; Chen Y; Lu X; Zhang X; Shen P; Li J; Han Q; Li Z; Liu P Acta Physiol (Oxf); 2017 May; 220(1):58-71. PubMed ID: 27614093 [TBL] [Abstract][Full Text] [Related]
10. Emerging role of SIRT3 in endothelial metabolism, angiogenesis, and cardiovascular disease. He X; Zeng H; Chen JX J Cell Physiol; 2019 Mar; 234(3):2252-2265. PubMed ID: 30132870 [TBL] [Abstract][Full Text] [Related]
12. Oxidized nicotinamide adenine dinucleotide-dependent mitochondrial deacetylase sirtuin-3 as a potential therapeutic target of Parkinson's disease. Zhou ZD; Tan EK Ageing Res Rev; 2020 Sep; 62():101107. PubMed ID: 32535274 [TBL] [Abstract][Full Text] [Related]
13. SIRT3 as a potential therapeutic target for heart failure. Chen J; Chen S; Zhang B; Liu J Pharmacol Res; 2021 Mar; 165():105432. PubMed ID: 33508434 [TBL] [Abstract][Full Text] [Related]
14. Glutaredoxin-2 and Sirtuin-3 deficiencies impair cardiac mitochondrial energetics but their effects are not additive. Boardman NT; Migally B; Pileggi C; Parmar GS; Xuan JY; Menzies K; Harper ME Biochim Biophys Acta Mol Basis Dis; 2021 Jan; 1867(1):165982. PubMed ID: 33002579 [TBL] [Abstract][Full Text] [Related]
15. Impaired SIRT3 activity mediates cardiac dysfunction in endotoxemia by calpain-dependent disruption of ATP synthesis. Koentges C; Cimolai MC; Pfeil K; Wolf D; Marchini T; Tarkhnishvili A; Hoffmann MM; Odening KE; Diehl P; von Zur Mühlen C; Alvarez S; Bode C; Zirlik A; Bugger H J Mol Cell Cardiol; 2019 Aug; 133():138-147. PubMed ID: 31201798 [TBL] [Abstract][Full Text] [Related]
16. The role of SIRT3 in mitochondrial homeostasis and cardiac adaptation to hypertrophy and aging. Sack MN J Mol Cell Cardiol; 2012 Mar; 52(3):520-5. PubMed ID: 22119802 [TBL] [Abstract][Full Text] [Related]
18. Advances in characterization of SIRT3 deacetylation targets in mitochondrial function. Wang S; Zhang J; Deng X; Zhao Y; Xu K Biochimie; 2020 Dec; 179():1-13. PubMed ID: 32898647 [TBL] [Abstract][Full Text] [Related]
19. Role of histone deacetylase Sirt3 in the development and regression of atherosclerosis. Liu Y; Shen X; Pang M; Sun Z; Qian Y; Xue W; Wang Z; Li L Life Sci; 2021 May; 272():119178. PubMed ID: 33610576 [TBL] [Abstract][Full Text] [Related]
20. SIRT3 deficiency impairs mitochondrial and contractile function in the heart. Koentges C; Pfeil K; Schnick T; Wiese S; Dahlbock R; Cimolai MC; Meyer-Steenbuck M; Cenkerova K; Hoffmann MM; Jaeger C; Odening KE; Kammerer B; Hein L; Bode C; Bugger H Basic Res Cardiol; 2015; 110(4):36. PubMed ID: 25962702 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]