These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 30458669)

  • 1. Initial balance in human standing postures: Roles of the joint mechanisms.
    Ashtiani MN; Azghani MR; Parnianpour M
    Proc Inst Mech Eng H; 2018 Dec; 232(12):1255-1260. PubMed ID: 30458669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of human stature and muscle strength on the standing strategies: A computational biomechanical study.
    Ashtiani MN; Azghani MR; Parnianpour M; Khalaf K
    Proc Inst Mech Eng H; 2020 Jul; 234(7):674-685. PubMed ID: 32267825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of muscle short-range stiffness to initial changes in joint kinetics and kinematics during perturbations to standing balance: A simulation study.
    De Groote F; Allen JL; Ting LH
    J Biomech; 2017 Apr; 55():71-77. PubMed ID: 28259465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anticipatory control of center of mass and joint stability during voluntary arm movement from a standing posture: interplay between active and passive control.
    Patla AE; Ishac MG; Winter DA
    Exp Brain Res; 2002 Apr; 143(3):318-27. PubMed ID: 11889509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMES-assisted standing model from varied seated postures.
    Gillette JC; Stevermer CA; Raina S; Derrick TR
    Biomed Sci Instrum; 2004; 40():30-5. PubMed ID: 15133931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of wobble board training on movement strategies to maintain equilibrium on unstable surfaces.
    Silva PB; Mrachacz-Kersting N; Oliveira AS; Kersting UG
    Hum Mov Sci; 2018 Apr; 58():231-238. PubMed ID: 29499471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model-based study of passive joint properties on muscle effort during static stance.
    Amankwah K; Triolo R; Kirsch R; Audu M
    J Biomech; 2006; 39(12):2253-63. PubMed ID: 16157347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The boundaries for joint angles of isocomfort for sitting and standing males based on perceived comfort of static joint postures.
    Kee D; Karwowski W
    Ergonomics; 2001 May; 44(6):614-48. PubMed ID: 11373024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Central programming of postural movements: adaptation to altered support-surface configurations.
    Horak FB; Nashner LM
    J Neurophysiol; 1986 Jun; 55(6):1369-81. PubMed ID: 3734861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward a quantitative definition of manual lifting postures.
    Burgess-Limerick R; Abernethy B
    Hum Factors; 1997 Mar; 39(1):141-8. PubMed ID: 9302886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intermittent muscle activity in the feedback loop of postural control system during natural quiet standing.
    Tanabe H; Fujii K; Kouzaki M
    Sci Rep; 2017 Sep; 7(1):10631. PubMed ID: 28878227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model-based approach to stabilizing crutch supported paraplegic standing by artificial hip joint stiffness.
    van der Spek JH; Veltink PH; Hermens HJ; Koopman BF; Boom HB
    IEEE Trans Neural Syst Rehabil Eng; 2003 Dec; 11(4):443-51. PubMed ID: 14960122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The balance recovery mechanisms against unexpected forward perturbation.
    Hwang S; Tae K; Sohn R; Kim J; Son J; Kim Y
    Ann Biomed Eng; 2009 Aug; 37(8):1629-37. PubMed ID: 19472056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-linear flexion relationships of the knee with the hip and ankle, and their relative postures during landing.
    Yeow CH; Lee PV; Goh JC
    Knee; 2011 Oct; 18(5):323-8. PubMed ID: 20638850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hip and ankle responses for reactive balance emerge from varying priorities to reduce effort and kinematic excursion: A simulation study.
    Versteeg CS; Ting LH; Allen JL
    J Biomech; 2016 Oct; 49(14):3230-3237. PubMed ID: 27543251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency-dependent force direction elucidates neural control of balance.
    Shiozawa K; Lee J; Russo M; Sternad D; Hogan N
    J Neuroeng Rehabil; 2021 Sep; 18(1):145. PubMed ID: 34563223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of compressive load on intervertebral joint in standing and sitting postures.
    Huang M; Hajizadeh K; Gibson I; Lee T
    Technol Health Care; 2016; 24(2):215-23. PubMed ID: 26484885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selection of an optimal muscle set for a 16-channel standing neuroprosthesis using a human musculoskeletal model.
    Heilman BP; Audu ML; Kirsch RF; Triolo RJ
    J Rehabil Res Dev; 2006; 43(2):273-86. PubMed ID: 16847793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relative contributions of postural balance mechanisms reveal studying the CoP displacement alone may be incomplete for analysis of challenging standing postures.
    Tisserand R; Plard J; Robert T
    Gait Posture; 2023 Mar; 101():134-137. PubMed ID: 36809712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motor unit recruitment and firing rate in medial gastrocnemius muscles during external perturbations in standing in humans.
    Pollock CL; Ivanova TD; Hunt MA; Garland SJ
    J Neurophysiol; 2014 Oct; 112(7):1678-84. PubMed ID: 24990568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.