These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 30458842)

  • 41. Reconstruction of ancestral genome reveals chromosome evolution history for selected legume species.
    Ren L; Huang W; Cannon SB
    New Phytol; 2019 Sep; 223(4):2090-2103. PubMed ID: 30834536
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ancestral Genome Reconstruction on Whole Genome Level.
    Feng B; Zhou L; Tang J
    Curr Genomics; 2017 Aug; 18(4):306-315. PubMed ID: 29081686
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reconstruction of ancestral karyotype illuminates chromosome evolution in the genus Cucumis.
    Zhao Q; Meng Y; Wang P; Qin X; Cheng C; Zhou J; Yu X; Li J; Lou Q; Jahn M; Chen J
    Plant J; 2021 Aug; 107(4):1243-1259. PubMed ID: 34160852
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Phylogenetic Survival Analysis.
    Torres Ortiz A; Grandjean L
    Methods Mol Biol; 2024; 2833():121-128. PubMed ID: 38949706
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reconstruction and evolutionary history of eutherian chromosomes.
    Kim J; Farré M; Auvil L; Capitanu B; Larkin DM; Ma J; Lewin HA
    Proc Natl Acad Sci U S A; 2017 Jul; 114(27):E5379-E5388. PubMed ID: 28630326
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Efficient Inference of Recent and Ancestral Recombination within Bacterial Populations.
    Mostowy R; Croucher NJ; Andam CP; Corander J; Hanage WP; Marttinen P
    Mol Biol Evol; 2017 May; 34(5):1167-1182. PubMed ID: 28199698
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The evolution of mycobacterial pathogenicity: clues from comparative genomics.
    Brosch R; Pym AS; Gordon SV; Cole ST
    Trends Microbiol; 2001 Sep; 9(9):452-8. PubMed ID: 11553458
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ancestral gene synteny reconstruction improves extant species scaffolding.
    Anselmetti Y; Berry V; Chauve C; Chateau A; Tannier E; Bérard S
    BMC Genomics; 2015; 16 Suppl 10(Suppl 10):S11. PubMed ID: 26450761
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reconstructing ancestral gene content by coevolution.
    Tuller T; Birin H; Gophna U; Kupiec M; Ruppin E
    Genome Res; 2010 Jan; 20(1):122-32. PubMed ID: 19948819
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A coarse-graining, ultrametric approach to resolve the phylogeny of prokaryotic strains with frequent homologous recombination.
    Pang TY
    BMC Evol Biol; 2020 May; 20(1):52. PubMed ID: 32381044
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evolutionary triplet models of structured RNA.
    Bradley RK; Holmes I
    PLoS Comput Biol; 2009 Aug; 5(8):e1000483. PubMed ID: 19714212
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mixture models of nucleotide sequence evolution that account for heterogeneity in the substitution process across sites and across lineages.
    Jayaswal V; Wong TK; Robinson J; Poladian L; Jermiin LS
    Syst Biol; 2014 Sep; 63(5):726-42. PubMed ID: 24927722
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative analyses of nonpathogenic, opportunistic, and totally pathogenic mycobacteria reveal genomic and biochemical variabilities and highlight the survival attributes of Mycobacterium tuberculosis.
    Rahman SA; Singh Y; Kohli S; Ahmad J; Ehtesham NZ; Tyagi AK; Hasnain SE
    mBio; 2014 Nov; 5(6):e02020. PubMed ID: 25370496
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reconstructing the ancestor of Mycobacterium leprae: the dynamics of gene loss and genome reduction.
    Gómez-Valero L; Rocha EP; Latorre A; Silva FJ
    Genome Res; 2007 Aug; 17(8):1178-85. PubMed ID: 17623808
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular characterisation of Brucella species.
    Scholz HC; Vergnaud G
    Rev Sci Tech; 2013 Apr; 32(1):149-62. PubMed ID: 23837373
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparative genomic and phylogenetic approaches to characterize the role of genetic recombination in mycobacterial evolution.
    Smith SE; Showers-Corneli P; Dardenne CN; Harpending HH; Martin DP; Beiko RG
    PLoS One; 2012; 7(11):e50070. PubMed ID: 23189179
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genomes as documents of evolutionary history: a probabilistic macrosynteny model for the reconstruction of ancestral genomes.
    Nakatani Y; McLysaght A
    Bioinformatics; 2017 Jul; 33(14):i369-i378. PubMed ID: 28881993
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The new phylogeny of the genus Mycobacterium: The old and the news.
    Tortoli E; Fedrizzi T; Meehan CJ; Trovato A; Grottola A; Giacobazzi E; Serpini GF; Tagliazucchi S; Fabio A; Bettua C; Bertorelli R; Frascaro F; De Sanctis V; Pecorari M; Jousson O; Segata N; Cirillo DM
    Infect Genet Evol; 2017 Dec; 56():19-25. PubMed ID: 29030295
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The process of genome shrinkage in the obligate symbiont Buchnera aphidicola.
    Moran NA; Mira A
    Genome Biol; 2001; 2(12):RESEARCH0054. PubMed ID: 11790257
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular evolution of Mycobacterium tuberculosis: phylogenetic reconstruction of clonal expansion.
    Warren RM; Richardson M; Sampson SL; van der Spuy GD; Bourn W; Hauman JH; Heersma H; Hide W; Beyers N; van Helden PD
    Tuberculosis (Edinb); 2001; 81(4):291-302. PubMed ID: 11584597
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.