BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 30459019)

  • 21. Selective Extraction of Rare Earth Elements from Permanent Magnet Scraps with Membrane Solvent Extraction.
    Kim D; Powell LE; Delmau LH; Peterson ES; Herchenroeder J; Bhave RR
    Environ Sci Technol; 2015 Aug; 49(16):9452-9. PubMed ID: 26107531
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient Recovery of End-of-Life NdFeB Permanent Magnets by Selective Leaching with Deep Eutectic Solvents.
    Liu C; Yan Q; Zhang X; Lei L; Xiao C
    Environ Sci Technol; 2020 Aug; 54(16):10370-10379. PubMed ID: 32673480
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of a Near-Zero-Waste Valorization Concept for Waste NdFeB Magnets: Production of Antimicrobial Fe Alginate Beads via Adsorption and Recovery of High-Purity Rare-Earth Elements.
    Emil-Kaya E; Uysal E; Dikmetas DN; Karbancioğlu-Güler F; Gürmen S; Friedrich B
    ACS Omega; 2024 Feb; 9(6):6442-6454. PubMed ID: 38371772
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Value analysis of neodymium content in shredder feed: toward enabling the feasibility of rare earth magnet recycling.
    Bandara HM; Darcy JW; Apelian D; Emmert MH
    Environ Sci Technol; 2014 Jun; 48(12):6553-60. PubMed ID: 24934194
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The importance of the pretreatment of samples in Nd quantification from NdFeB magnets through inductively coupled plasma atomic emission spectroscopy (ICP-OES)-a rapid and streamlined methodology.
    Gallardo K; Valdivia D; Jara A; Castillo R
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2023; 58(11):935-941. PubMed ID: 37791682
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Commercial-Scale Modification of NdFeB Magnets under Laser-Assisted Conditions.
    Radwan-Pragłowska N; Radwan-Pragłowska J; Łysiak K; Galek T; Janus Ł; Bogdał D
    Nanomaterials (Basel); 2024 Feb; 14(5):. PubMed ID: 38470762
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient recovery of rare earth elements from discarded NdFeB magnets by mechanical activation coupled with acid leaching.
    Mao F; Zhu N; Zhu W; Liu B; Wu P; Dang Z
    Environ Sci Pollut Res Int; 2022 Apr; 29(17):25532-25543. PubMed ID: 34841488
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Potential interference of small neodymium magnets with cardiac pacemakers and implantable cardioverter-defibrillators.
    Wolber T; Ryf S; Binggeli C; Holzmeister J; Brunckhorst C; Luechinger R; Duru F
    Heart Rhythm; 2007 Jan; 4(1):1-4. PubMed ID: 17198980
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interference of neodymium magnets with cardiac pacemakers and implantable cardioverter-defibrillators: an in vitro study.
    Ryf S; Wolber T; Duru F; Luechinger R
    Technol Health Care; 2008; 16(1):13-8. PubMed ID: 18334784
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unlocking Dysprosium Constraints for China's 1.5 °C Climate Target.
    Dai T; Liu YF; Wang P; Qiu Y; Mancheri N; Chen W; Liu JX; Chen WQ; Wang H; Wang AJ
    Environ Sci Technol; 2023 Sep; 57(38):14113-14126. PubMed ID: 37709662
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigating Metal-Tributyl Phosphate Complexes during Supercritical Fluid Extraction of the NdFeB Magnet Using Density Functional Theory and X-ray Absorption Spectroscopy.
    Zhang J; Chen N; Morozova V; Voznyy O; Azimi G
    Inorg Chem; 2023 May; 62(20):7689-7702. PubMed ID: 37154778
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluating rare earth element availability: a case with revolutionary demand from clean technologies.
    Alonso E; Sherman AM; Wallington TJ; Everson MP; Field FR; Roth R; Kirchain RE
    Environ Sci Technol; 2012 Mar; 46(6):3406-14. PubMed ID: 22304002
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Production of rare earth element oxide powders by solution combustion: a new approach for recycling of NdFeB magnets.
    Emil-Kaya E; Stopic S; Gürmen S; Friedrich B
    RSC Adv; 2022 Oct; 12(48):31478-31488. PubMed ID: 36382150
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Managing critical materials with a technology-specific stocks and flows model.
    Busch J; Steinberger JK; Dawson DA; Purnell P; Roelich K
    Environ Sci Technol; 2014 Jan; 48(2):1298-305. PubMed ID: 24328245
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Review on the Parameters of Recycling NdFeB Magnets via a Hydrogenation Process.
    Habibzadeh A; Kucuker MA; Gökelma M
    ACS Omega; 2023 May; 8(20):17431-17445. PubMed ID: 37251130
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Environmental and health-related research on application and production of rare earth elements under scrutiny.
    Klingelhöfer D; Braun M; Dröge J; Fischer A; Brüggmann D; Groneberg DA
    Global Health; 2022 Oct; 18(1):86. PubMed ID: 36253760
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prospective analysis of the flows of certain rare earths in Europe at the 2020 horizon.
    Rollat A; Guyonnet D; Planchon M; Tuduri J
    Waste Manag; 2016 Mar; 49():427-436. PubMed ID: 26818182
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scarce metals in conventional passenger vehicles and end-of-life vehicle shredder output.
    Widmer R; Du X; Haag O; Restrepo E; Wäger PA
    Environ Sci Technol; 2015 Apr; 49(7):4591-9. PubMed ID: 25719501
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Concomitant Leaching and Electrochemical Extraction of Rare Earth Elements from Monazite.
    Maes S; Zhuang WQ; Rabaey K; Alvarez-Cohen L; Hennebel T
    Environ Sci Technol; 2017 Feb; 51(3):1654-1661. PubMed ID: 28056169
    [TBL] [Abstract][Full Text] [Related]  

  • 40. End-of-life passenger vehicles recycling decision system in China based on dynamic material flow analysis and life cycle assessment.
    Liu M; Chen X; Zhang M; Lv X; Wang H; Chen Z; Huang X; Zhang X; Zhang S
    Waste Manag; 2020 Nov; 117():81-92. PubMed ID: 32818811
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.