BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 30459188)

  • 1. Defining the Metabolic Pathways and Host-Derived Carbon Substrates Required for Francisella tularensis Intracellular Growth.
    Radlinski LC; Brunton J; Steele S; Taft-Benz S; Kawula TH
    mBio; 2018 Nov; 9(6):. PubMed ID: 30459188
    [No Abstract]   [Full Text] [Related]  

  • 2. Differential Substrate Usage and Metabolic Fluxes in
    Chen F; Rydzewski K; Kutzner E; Häuslein I; Schunder E; Wang X; Meighen-Berger K; Grunow R; Eisenreich W; Heuner K
    Front Cell Infect Microbiol; 2017; 7():275. PubMed ID: 28680859
    [No Abstract]   [Full Text] [Related]  

  • 3.
    Benziger PT; Kopping EJ; McLaughlin PA; Thanassi DG
    mBio; 2023 Aug; 14(4):e0113623. PubMed ID: 37404047
    [No Abstract]   [Full Text] [Related]  

  • 4. A method for functional trans-complementation of intracellular Francisella tularensis.
    Steele S; Taft-Benz S; Kawula T
    PLoS One; 2014; 9(2):e88194. PubMed ID: 24505427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gluconeogenesis, an essential metabolic pathway for pathogenic Francisella.
    Brissac T; Ziveri J; Ramond E; Tros F; Kock S; Dupuis M; Brillet M; Barel M; Peyriga L; Cahoreau E; Charbit A
    Mol Microbiol; 2015 Oct; 98(3):518-34. PubMed ID: 26192619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Francisella tularensis Exploits AMPK Activation to Harvest Host-Derived Nutrients Liberated from Host Lipolysis.
    Dominguez SR; Whiles S; Deobald KN; Kawula T
    Infect Immun; 2022 Aug; 90(8):e0015522. PubMed ID: 35916521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Francisella tularensis harvests nutrients derived via ATG5-independent autophagy to support intracellular growth.
    Steele S; Brunton J; Ziehr B; Taft-Benz S; Moorman N; Kawula T
    PLoS Pathog; 2013 Aug; 9(8):e1003562. PubMed ID: 23966861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macrophage Selenoproteins Restrict Intracellular Replication of
    Markley RL; Restori KH; Katkere B; Sumner SE; Nicol MJ; Tyryshkina A; Nettleford SK; Williamson DR; Place DE; Dewan KK; Shay AE; Carlson BA; Girirajan S; Prabhu KS; Kirimanjeswara GS
    Front Immunol; 2021; 12():701341. PubMed ID: 34777335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic Reprogramming of Host Cells by Virulent Francisella tularensis for Optimal Replication and Modulation of Inflammation.
    Wyatt EV; Diaz K; Griffin AJ; Rasmussen JA; Crane DD; Jones BD; Bosio CM
    J Immunol; 2016 May; 196(10):4227-36. PubMed ID: 27029588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. OpiA, a Type Six Secretion System Substrate, Localizes to the Cell Pole and Plays a Role in Bacterial Growth and Viability in
    Cantlay S; Haggerty K; Horzempa J
    J Bacteriol; 2020 Jun; 202(14):. PubMed ID: 32366588
    [No Abstract]   [Full Text] [Related]  

  • 11. Deletion of the Major Facilitator Superfamily Transporter
    Balzano PM; Cunningham AL; Grassel C; Barry EM
    Infect Immun; 2018 Mar; 86(3):. PubMed ID: 29311235
    [No Abstract]   [Full Text] [Related]  

  • 12. Identification of transposon insertion mutants of Francisella tularensis tularensis strain Schu S4 deficient in intracellular replication in the hepatic cell line HepG2.
    Qin A; Mann BJ
    BMC Microbiol; 2006 Jul; 6():69. PubMed ID: 16879747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global Analysis of Genes Essential for Francisella tularensis Schu S4 Growth
    Ireland PM; Bullifent HL; Senior NJ; Southern SJ; Yang ZR; Ireland RE; Nelson M; Atkins HS; Titball RW; Scott AE
    J Bacteriol; 2019 Apr; 201(7):. PubMed ID: 30642993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteins involved in Francisella tularensis survival and replication inside macrophages.
    Ramond E; Gesbert G; Barel M; Charbit A
    Future Microbiol; 2012 Nov; 7(11):1255-68. PubMed ID: 23075445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-Function Analysis of DipA, a Francisella tularensis Virulence Factor Required for Intracellular Replication.
    Chong A; Child R; Wehrly TD; Rockx-Brouwer D; Qin A; Mann BJ; Celli J
    PLoS One; 2013; 8(6):e67965. PubMed ID: 23840797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal Manipulation of Mitochondrial Function by Virulent Francisella tularensis To Limit Inflammation and Control Cell Death.
    Jessop F; Schwarz B; Heitmann E; Buntyn R; Wehrly T; Bosio CM
    Infect Immun; 2018 Aug; 86(8):. PubMed ID: 29760217
    [No Abstract]   [Full Text] [Related]  

  • 17. Enzymatic Characterization of Fructose 1,6-Bisphosphatase II from Francisella tularensis, an Essential Enzyme for Pathogenesis.
    Gutka HJ; Wolf NM; Bondoc JMG; Movahedzadeh F
    Appl Biochem Biotechnol; 2017 Dec; 183(4):1439-1454. PubMed ID: 28547120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An AraC/XylS Family Transcriptional Regulator Modulates the Oxidative Stress Response of Francisella tularensis.
    Marghani D; Ma Z; Centone AJ; Huang W; Malik M; Bakshi CS
    J Bacteriol; 2021 Nov; 203(23):e0018521. PubMed ID: 34543107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying Francisella tularensis genes required for growth in host cells.
    Brunton J; Steele S; Miller C; Lovullo E; Taft-Benz S; Kawula T
    Infect Immun; 2015 Aug; 83(8):3015-25. PubMed ID: 25987704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virulent and avirulent strains of Francisella tularensis prevent acidification and maturation of their phagosomes and escape into the cytoplasm in human macrophages.
    Clemens DL; Lee BY; Horwitz MA
    Infect Immun; 2004 Jun; 72(6):3204-17. PubMed ID: 15155622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.