These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
369 related articles for article (PubMed ID: 30459229)
1. Nociceptor Translational Profiling Reveals the Ragulator-Rag GTPase Complex as a Critical Generator of Neuropathic Pain. Megat S; Ray PR; Moy JK; Lou TF; Barragán-Iglesias P; Li Y; Pradhan G; Wanghzou A; Ahmad A; Burton MD; North RY; Dougherty PM; Khoutorsky A; Sonenberg N; Webster KR; Dussor G; Campbell ZT; Price TJ J Neurosci; 2019 Jan; 39(3):393-411. PubMed ID: 30459229 [TBL] [Abstract][Full Text] [Related]
2. The MNK-eIF4E Signaling Axis Contributes to Injury-Induced Nociceptive Plasticity and the Development of Chronic Pain. Moy JK; Khoutorsky A; Asiedu MN; Black BJ; Kuhn JL; Barragán-Iglesias P; Megat S; Burton MD; Burgos-Vega CC; Melemedjian OK; Boitano S; Vagner J; Gkogkas CG; Pancrazio JJ; Mogil JS; Dussor G; Sonenberg N; Price TJ J Neurosci; 2017 Aug; 37(31):7481-7499. PubMed ID: 28674170 [TBL] [Abstract][Full Text] [Related]
3. IL-6 induced upregulation of T-type Ca Jeevakumar V; Al Sardar AK; Mohamed F; Smithhart CM; Price T; Dussor G J Neurophysiol; 2020 Jul; 124(1):274-283. PubMed ID: 32519575 [TBL] [Abstract][Full Text] [Related]
4. Differences between Dorsal Root and Trigeminal Ganglion Nociceptors in Mice Revealed by Translational Profiling. Megat S; Ray PR; Tavares-Ferreira D; Moy JK; Sankaranarayanan I; Wanghzou A; Fang Lou T; Barragan-Iglesias P; Campbell ZT; Dussor G; Price TJ J Neurosci; 2019 Aug; 39(35):6829-6847. PubMed ID: 31253755 [TBL] [Abstract][Full Text] [Related]
5. ephrin-B2 promotes nociceptive plasticity and hyperalgesic priming through EphB2-MNK-eIF4E signaling in both mice and humans. David ET; Yousuf MS; Mei HR; Jain A; Krishnagiri S; Elahi H; Venkatesan R; Srikanth KD; Dussor G; Dalva MB; Price TJ Pharmacol Res; 2024 Aug; 206():107284. PubMed ID: 38925462 [TBL] [Abstract][Full Text] [Related]
6. MNK-eIF4E signalling is a highly conserved mechanism for sensory neuron axonal plasticity: evidence from Mihail SM; Wangzhou A; Kunjilwar KK; Moy JK; Dussor G; Walters ET; Price TJ Philos Trans R Soc Lond B Biol Sci; 2019 Nov; 374(1785):20190289. PubMed ID: 31544610 [TBL] [Abstract][Full Text] [Related]
7. DRG Voltage-Gated Sodium Channel 1.7 Is Upregulated in Paclitaxel-Induced Neuropathy in Rats and in Humans with Neuropathic Pain. Li Y; North RY; Rhines LD; Tatsui CE; Rao G; Edwards DD; Cassidy RM; Harrison DS; Johansson CA; Zhang H; Dougherty PM J Neurosci; 2018 Jan; 38(5):1124-1136. PubMed ID: 29255002 [TBL] [Abstract][Full Text] [Related]
8. MNK1 pathway activity maintains protein synthesis in rapalog-treated gliomas. Grzmil M; Huber RM; Hess D; Frank S; Hynx D; Moncayo G; Klein D; Merlo A; Hemmings BA J Clin Invest; 2014 Feb; 124(2):742-54. PubMed ID: 24401275 [TBL] [Abstract][Full Text] [Related]
9. Eukaryotic initiation factor 4E is a novel effector of mTORC1 signaling pathway in cross talk with Mnk1. Batool A; Majeed ST; Aashaq S; Majeed R; Bhat NN; Andrabi KI Mol Cell Biochem; 2020 Feb; 465(1-2):13-26. PubMed ID: 31782083 [TBL] [Abstract][Full Text] [Related]
10. MNK1 and MNK2 Expression in the Human Dorsal Root and Trigeminal Ganglion. Shiers S; Sahn JJ; Price TJ Neuroscience; 2023 Apr; 515():96-107. PubMed ID: 36764601 [TBL] [Abstract][Full Text] [Related]
11. The role of MNK1-mTORC1 pathway in modulating macrophage responses to Lou Y-L; Xie D-L; Huang X-H; Zheng M-M; Chen N; Xu J-R Microbiol Spectr; 2024 Aug; 12(8):e0334023. PubMed ID: 38980024 [TBL] [Abstract][Full Text] [Related]
12. Simultaneous inhibition of mTOR-containing complex 1 (mTORC1) and MNK induces apoptosis of cutaneous T-cell lymphoma (CTCL) cells. Marzec M; Liu X; Wysocka M; Rook AH; Odum N; Wasik MA PLoS One; 2011; 6(9):e24849. PubMed ID: 21949767 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of Mitogen-activated Protein Kinase (MAPK)-interacting Kinase (MNK) Preferentially Affects Translation of mRNAs Containing Both a 5'-Terminal Cap and Hairpin. Korneeva NL; Song A; Gram H; Edens MA; Rhoads RE J Biol Chem; 2016 Feb; 291(7):3455-67. PubMed ID: 26668315 [TBL] [Abstract][Full Text] [Related]
14. Signalling to eIF4E in cancer. Siddiqui N; Sonenberg N Biochem Soc Trans; 2015 Oct; 43(5):763-72. PubMed ID: 26517881 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of mammalian target of rapamycin induces phosphatidylinositol 3-kinase-dependent and Mnk-mediated eukaryotic translation initiation factor 4E phosphorylation. Wang X; Yue P; Chan CB; Ye K; Ueda T; Watanabe-Fukunaga R; Fukunaga R; Fu H; Khuri FR; Sun SY Mol Cell Biol; 2007 Nov; 27(21):7405-13. PubMed ID: 17724079 [TBL] [Abstract][Full Text] [Related]
16. Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4E by protein kinase Mnk1 in vivo. Waskiewicz AJ; Johnson JC; Penn B; Mahalingam M; Kimball SR; Cooper JA Mol Cell Biol; 1999 Mar; 19(3):1871-80. PubMed ID: 10022874 [TBL] [Abstract][Full Text] [Related]
17. Regulation of eukaryotic initiation factor 4E (eIF4E) phosphorylation by mitogen-activated protein kinase occurs through modulation of Mnk1-eIF4G interaction. Shveygert M; Kaiser C; Bradrick SS; Gromeier M Mol Cell Biol; 2010 Nov; 30(21):5160-7. PubMed ID: 20823271 [TBL] [Abstract][Full Text] [Related]
18. Reversal of peripheral nerve injury-induced neuropathic pain and cognitive dysfunction via genetic and tomivosertib targeting of MNK. Shiers S; Mwirigi J; Pradhan G; Kume M; Black B; Barragan-Iglesias P; Moy JK; Dussor G; Pancrazio JJ; Kroener S; Price TJ Neuropsychopharmacology; 2020 Feb; 45(3):524-533. PubMed ID: 31590180 [TBL] [Abstract][Full Text] [Related]