These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
346 related articles for article (PubMed ID: 30459331)
1. Comparison of machine learning models for the prediction of mortality of patients with unplanned extubation in intensive care units. Hsieh MH; Hsieh MJ; Chen CM; Hsieh CC; Chao CM; Lai CC Sci Rep; 2018 Nov; 8(1):17116. PubMed ID: 30459331 [TBL] [Abstract][Full Text] [Related]
2. Development and Validation of Unplanned Extubation Prediction Models Using Intensive Care Unit Data: Retrospective, Comparative, Machine Learning Study. Hur S; Min JY; Yoo J; Kim K; Chung CR; Dykes PC; Cha WC J Med Internet Res; 2021 Aug; 23(8):e23508. PubMed ID: 34382940 [TBL] [Abstract][Full Text] [Related]
3. Risk Factors and Predictive Models for Peripherally Inserted Central Catheter Unplanned Extubation in Patients With Cancer: Prospective, Machine Learning Study. Zhang J; Ma G; Peng S; Hou J; Xu R; Luo L; Hu J; Yao N; Wang J; Huang X J Med Internet Res; 2023 Nov; 25():e49016. PubMed ID: 37971792 [TBL] [Abstract][Full Text] [Related]
4. Prognostic factors and outcomes of unplanned extubation. Chao CM; Sung MI; Cheng KC; Lai CC; Chan KS; Cheng AC; Hsing SC; Chen CM Sci Rep; 2017 Aug; 7(1):8636. PubMed ID: 28819204 [TBL] [Abstract][Full Text] [Related]
5. Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach. Awad A; Bader-El-Den M; McNicholas J; Briggs J Int J Med Inform; 2017 Dec; 108():185-195. PubMed ID: 29132626 [TBL] [Abstract][Full Text] [Related]
6. Comparison of the APACHE III, APACHE II and Glasgow Coma Scale in acute head injury for prediction of mortality and functional outcome. Cho DY; Wang YC Intensive Care Med; 1997 Jan; 23(1):77-84. PubMed ID: 9037644 [TBL] [Abstract][Full Text] [Related]
7. Predicting in-hospital mortality of patients with acute kidney injury in the ICU using random forest model. Lin K; Hu Y; Kong G Int J Med Inform; 2019 May; 125():55-61. PubMed ID: 30914181 [TBL] [Abstract][Full Text] [Related]
8. Revisiting Unplanned Endotracheal Extubation and Disease Severity in Intensive Care Units. Chuang ML; Lee CY; Chen YF; Huang SF; Lin IF PLoS One; 2015; 10(10):e0139864. PubMed ID: 26484674 [TBL] [Abstract][Full Text] [Related]
10. Comparison of APACHE III, II and the Glasgow Coma Scale for prediction of mortality in a neurosurgical intensive care unit. Cho DY; Wang YC; Lee MJ Clin Intensive Care; 1995; 6(1):9-14. PubMed ID: 10150362 [TBL] [Abstract][Full Text] [Related]
11. Verification of the Acute Physiology and Chronic Health Evaluation scoring system in a Hong Kong intensive care unit. Oh TE; Hutchinson R; Short S; Buckley T; Lin E; Leung D Crit Care Med; 1993 May; 21(5):698-705. PubMed ID: 8482091 [TBL] [Abstract][Full Text] [Related]
12. Machine learning algorithm to predict mortality in patients undergoing continuous renal replacement therapy. Kang MW; Kim J; Kim DK; Oh KH; Joo KW; Kim YS; Han SS Crit Care; 2020 Feb; 24(1):42. PubMed ID: 32028984 [TBL] [Abstract][Full Text] [Related]
13. The outcome of acute renal failure in the intensive care unit according to RIFLE: model application, sensitivity, and predictability. Abosaif NY; Tolba YA; Heap M; Russell J; El Nahas AM Am J Kidney Dis; 2005 Dec; 46(6):1038-48. PubMed ID: 16310569 [TBL] [Abstract][Full Text] [Related]
14. Predicting in-hospital mortality in ICU patients with sepsis using gradient boosting decision tree. Li K; Shi Q; Liu S; Xie Y; Liu J Medicine (Baltimore); 2021 May; 100(19):e25813. PubMed ID: 34106618 [TBL] [Abstract][Full Text] [Related]
15. Prediction of In-hospital Mortality in Emergency Department Patients With Sepsis: A Local Big Data-Driven, Machine Learning Approach. Taylor RA; Pare JR; Venkatesh AK; Mowafi H; Melnick ER; Fleischman W; Hall MK Acad Emerg Med; 2016 Mar; 23(3):269-78. PubMed ID: 26679719 [TBL] [Abstract][Full Text] [Related]
16. Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU. Kong G; Lin K; Hu Y BMC Med Inform Decis Mak; 2020 Oct; 20(1):251. PubMed ID: 33008381 [TBL] [Abstract][Full Text] [Related]
17. Simplified prognostic model for critically ill patients in resource limited settings in South Asia. Haniffa R; Mukaka M; Munasinghe SB; De Silva AP; Jayasinghe KSA; Beane A; de Keizer N; Dondorp AM Crit Care; 2017 Oct; 21(1):250. PubMed ID: 29041985 [TBL] [Abstract][Full Text] [Related]
18. Emergency department triage prediction of clinical outcomes using machine learning models. Raita Y; Goto T; Faridi MK; Brown DFM; Camargo CA; Hasegawa K Crit Care; 2019 Feb; 23(1):64. PubMed ID: 30795786 [TBL] [Abstract][Full Text] [Related]
19. Acute physiology and chronic health evaluation (APACHE II) and Glasgow coma scores as predictors of outcome from intensive care after cardiac arrest. Niskanen M; Kari A; Nikki P; Iisalo E; Kaukinen L; Rauhala V; Saarela E; Halinen M Crit Care Med; 1991 Dec; 19(12):1465-73. PubMed ID: 1959364 [TBL] [Abstract][Full Text] [Related]