These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Human gelatin-based composite hydrogels for osteochondral tissue engineering and their adaptation into bioinks for extrusion, inkjet, and digital light processing bioprinting. Bedell ML; Torres AL; Hogan KJ; Wang Z; Wang B; Melchiorri AJ; Grande-Allen KJ; Mikos AG Biofabrication; 2022 Aug; 14(4):. PubMed ID: 35931060 [TBL] [Abstract][Full Text] [Related]
3. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects. Compaan AM; Song K; Chai W; Huang Y ACS Appl Mater Interfaces; 2020 Feb; 12(7):7855-7868. PubMed ID: 31948226 [TBL] [Abstract][Full Text] [Related]
4. Inkjet-Spray Hybrid Printing for 3D Freeform Fabrication of Multilayered Hydrogel Structures. Yoon S; Park JA; Lee HR; Yoon WH; Hwang DS; Jung S Adv Healthc Mater; 2018 Jul; 7(14):e1800050. PubMed ID: 29708307 [TBL] [Abstract][Full Text] [Related]
5. Sonochemical Degradation of Gelatin Methacryloyl to Control Viscoelasticity for Inkjet Bioprinting. Lee Y; Park JA; Tuladhar T; Jung S Macromol Biosci; 2023 May; 23(5):e2200509. PubMed ID: 36896820 [TBL] [Abstract][Full Text] [Related]
6. Collagen-based bioinks for hard tissue engineering applications: a comprehensive review. Marques CF; Diogo GS; Pina S; Oliveira JM; Silva TH; Reis RL J Mater Sci Mater Med; 2019 Mar; 30(3):32. PubMed ID: 30840132 [TBL] [Abstract][Full Text] [Related]
7. Advancing bioinks for 3D bioprinting using reactive fillers: A review. Heid S; Boccaccini AR Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053 [TBL] [Abstract][Full Text] [Related]
8. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink. Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677 [TBL] [Abstract][Full Text] [Related]
9. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy. Yin J; Yan M; Wang Y; Fu J; Suo H ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059 [TBL] [Abstract][Full Text] [Related]
10. Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers in vitro and in vivo. Costantini M; Testa S; Mozetic P; Barbetta A; Fuoco C; Fornetti E; Tamiro F; Bernardini S; Jaroszewicz J; Święszkowski W; Trombetta M; Castagnoli L; Seliktar D; Garstecki P; Cesareni G; Cannata S; Rainer A; Gargioli C Biomaterials; 2017 Jul; 131():98-110. PubMed ID: 28388499 [TBL] [Abstract][Full Text] [Related]
11. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology. Zhao Y; Li Y; Mao S; Sun W; Yao R Biofabrication; 2015 Nov; 7(4):045002. PubMed ID: 26523399 [TBL] [Abstract][Full Text] [Related]
12. Drop-On-Drop Multimaterial 3D Bioprinting Realized by Peroxidase-Mediated Cross-Linking. Sakai S; Ueda K; Gantumur E; Taya M; Nakamura M Macromol Rapid Commun; 2018 Feb; 39(3):. PubMed ID: 29226501 [TBL] [Abstract][Full Text] [Related]
13. Study of gelatin as an effective energy absorbing layer for laser bioprinting. Xiong R; Zhang Z; Chai W; Chrisey DB; Huang Y Biofabrication; 2017 Jun; 9(2):024103. PubMed ID: 28597844 [TBL] [Abstract][Full Text] [Related]
14. Using Sacrificial Cell Spheroids for the Bioprinting of Perfusable 3D Tissue and Organ Constructs: A Computational Study. Robu A; Mironov V; Neagu A Comput Math Methods Med; 2019; 2019():7853586. PubMed ID: 31236128 [TBL] [Abstract][Full Text] [Related]
16. 3D bioprinting of complex channels within cell-laden hydrogels. Ji S; Almeida E; Guvendiren M Acta Biomater; 2019 Sep; 95():214-224. PubMed ID: 30831327 [TBL] [Abstract][Full Text] [Related]
17. Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs Using Low-Viscosity Bioink. Colosi C; Shin SR; Manoharan V; Massa S; Costantini M; Barbetta A; Dokmeci MR; Dentini M; Khademhosseini A Adv Mater; 2016 Jan; 28(4):677-84. PubMed ID: 26606883 [TBL] [Abstract][Full Text] [Related]
18. Double-Network Polyurethane-Gelatin Hydrogel with Tunable Modulus for High-Resolution 3D Bioprinting. Hsieh CT; Hsu SH ACS Appl Mater Interfaces; 2019 Sep; 11(36):32746-32757. PubMed ID: 31407899 [TBL] [Abstract][Full Text] [Related]
19. Bio-resin for high resolution lithography-based biofabrication of complex cell-laden constructs. Lim KS; Levato R; Costa PF; Castilho MD; Alcala-Orozco CR; van Dorenmalen KMA; Melchels FPW; Gawlitta D; Hooper GJ; Malda J; Woodfield TBF Biofabrication; 2018 May; 10(3):034101. PubMed ID: 29693552 [TBL] [Abstract][Full Text] [Related]
20. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Daly AC; Critchley SE; Rencsok EM; Kelly DJ Biofabrication; 2016 Oct; 8(4):045002. PubMed ID: 27716628 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]