These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 30459580)
1. BCI to Potentially Enhance Streaming Images to a VR Headset by Predicting Head Rotation. Brouwer AM; van der Waa J; Stokking H Front Hum Neurosci; 2018; 12():420. PubMed ID: 30459580 [TBL] [Abstract][Full Text] [Related]
2. Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: a within-subject analysis. Vourvopoulos A; Bermúdez I Badia S J Neuroeng Rehabil; 2016 Aug; 13(1):69. PubMed ID: 27503007 [TBL] [Abstract][Full Text] [Related]
3. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials. Trejo LJ; Rosipal R; Matthews B IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of EEG Headset Mounting for Brain-Computer Interface-Based Stroke Rehabilitation by Patients, Therapists, and Relatives. Jochumsen M; Knoche H; Kidmose P; Kjær TW; Dinesen BI Front Hum Neurosci; 2020; 14():13. PubMed ID: 32116602 [TBL] [Abstract][Full Text] [Related]
5. Rapid P300 brain-computer interface communication with a head-mounted display. Käthner I; Kübler A; Halder S Front Neurosci; 2015; 9():207. PubMed ID: 26097447 [TBL] [Abstract][Full Text] [Related]
6. Ergonomic design of an EEG headset using 3D anthropometry. Lacko D; Vleugels J; Fransen E; Huysmans T; De Bruyne G; Van Hulle MM; Sijbers J; Verwulgen S Appl Ergon; 2017 Jan; 58():128-136. PubMed ID: 27633205 [TBL] [Abstract][Full Text] [Related]
7. A Magnetoencephalographic/Encephalographic (MEG/EEG) Brain-Computer Interface Driver for Interactive iOS Mobile Videogame Applications Utilizing the Hadoop Ecosystem, MongoDB, and Cassandra NoSQL Databases. McClay W Diseases; 2018 Sep; 6(4):. PubMed ID: 30274210 [TBL] [Abstract][Full Text] [Related]
8. Long-Term BCI Training of a Tetraplegic User: Adaptive Riemannian Classifiers and User Training. Benaroch C; Sadatnejad K; Roc A; Appriou A; Monseigne T; Pramij S; Mladenovic J; Pillette L; Jeunet C; Lotte F Front Hum Neurosci; 2021; 15():635653. PubMed ID: 33815081 [TBL] [Abstract][Full Text] [Related]
9. An Instant Donning Multi-Channel EEG Headset (with Comb-Shaped Dry Electrodes) and BCI Applications. Kim J; Lee J; Han C; Park K Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30934931 [TBL] [Abstract][Full Text] [Related]
10. Enhancing motor imagery detection efficacy using multisensory virtual reality priming. Amini Gougeh R; Falk TH Front Neuroergon; 2023; 4():1080200. PubMed ID: 38236517 [TBL] [Abstract][Full Text] [Related]
11. Immersive BCI with SSVEP in VR head-mounted display. Bonkon Koo ; Hwan-Gon Lee ; Yunjun Nam ; Seungjin Choi Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1103-6. PubMed ID: 26736458 [TBL] [Abstract][Full Text] [Related]
12. An Affective Interaction System using Virtual Reality and Brain-Computer Interface. Chin ZY; Zhang Z; Wang C; Ang KK Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6183-6186. PubMed ID: 34892528 [TBL] [Abstract][Full Text] [Related]
13. Design of Wearable Headset with Steady State Visually Evoked Potential-Based Brain Computer Interface. Lin BS; Lin BS; Yen TH; Hsu CC; Wang YC Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31658616 [TBL] [Abstract][Full Text] [Related]
14. Exploring virtual environments with an EEG-based BCI through motor imagery. Leeb R; Scherer R; Keinrath C; Guger C; Pfurtscheller G Biomed Tech (Berl); 2005 Apr; 50(4):86-91. PubMed ID: 15884704 [TBL] [Abstract][Full Text] [Related]
15. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar. Luu TP; He Y; Brown S; Nakagame S; Contreras-Vidal JL J Neural Eng; 2016 Jun; 13(3):036006. PubMed ID: 27064824 [TBL] [Abstract][Full Text] [Related]
17. Classification of Movement and Inhibition Using a Hybrid BCI. Chmura J; Rosing J; Collazos S; Goodwin SJ Front Neurorobot; 2017; 11():38. PubMed ID: 28860986 [TBL] [Abstract][Full Text] [Related]
18. A Wearable Channel Selection-Based Brain-Computer Interface for Motor Imagery Detection. Lo CC; Chien TY; Chen YC; Tsai SH; Fang WC; Lin BS Sensors (Basel); 2016 Feb; 16(2):213. PubMed ID: 26861347 [TBL] [Abstract][Full Text] [Related]
19. Reconstructing Degree of Forearm Rotation from Imagined movements for BCI-based Robot Hand Control. Yun YD; Jeong JH; Cho JH; Kim DJ; Lee SW Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3014-3017. PubMed ID: 31946523 [TBL] [Abstract][Full Text] [Related]
20. Neurofeedback-based motor imagery training for brain-computer interface (BCI). Hwang HJ; Kwon K; Im CH J Neurosci Methods; 2009 Apr; 179(1):150-6. PubMed ID: 19428521 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]