BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 30459748)

  • 1. Erratum: A Class 1 Histone Deacetylase as Major Regulator of Secondary Metabolite Production in
    Frontiers Production Office
    Front Microbiol; 2018; 9():2714. PubMed ID: 30459748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Class 1 Histone Deacetylase as Major Regulator of Secondary Metabolite Production in
    Pidroni A; Faber B; Brosch G; Bauer I; Graessle S
    Front Microbiol; 2018; 9():2212. PubMed ID: 30283426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sirtuin A regulates secondary metabolite production by Aspergillus nidulans.
    Itoh E; Shigemoto R; Oinuma KI; Shimizu M; Masuo S; Takaya N
    J Gen Appl Microbiol; 2017 Sep; 63(4):228-235. PubMed ID: 28674377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corrigendum: Collection and Curation of Transcriptional Regulatory Interactions in
    Hu Y; Qin Y; Liu G
    Front Microbiol; 2018; 9():2713. PubMed ID: 30455682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of two putative histone deacetylase genes from Aspergillus nidulans.
    Graessle S; Dangl M; Haas H; Mair K; Trojer P; Brandtner EM; Walton JD; Loidl P; Brosch G
    Biochim Biophys Acta; 2000 Jun; 1492(1):120-6. PubMed ID: 11004483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. KdmB, a Jumonji Histone H3 Demethylase, Regulates Genome-Wide H3K4 Trimethylation and Is Required for Normal Induction of Secondary Metabolism in Aspergillus nidulans.
    Gacek-Matthews A; Berger H; Sasaki T; Wittstein K; Gruber C; Lewis ZA; Strauss J
    PLoS Genet; 2016 Aug; 12(8):e1006222. PubMed ID: 27548260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 5-Methylmellein is a novel inhibitor of fungal sirtuin and modulates fungal secondary metabolite production.
    Shigemoto R; Matsumoto T; Masuo S; Takaya N
    J Gen Appl Microbiol; 2018 Nov; 64(5):240-247. PubMed ID: 29794367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The HosA Histone Deacetylase Regulates Aflatoxin Biosynthesis Through Direct Regulation of Aflatoxin Cluster Genes.
    Lan H; Wu L; Sun R; Keller NP; Yang K; Ye L; He S; Zhang F; Wang S
    Mol Plant Microbe Interact; 2019 Sep; 32(9):1210-1228. PubMed ID: 30986121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic Dissection of the Evolutionarily Conserved WetA Developmental Regulator across a Genus of Filamentous Fungi.
    Wu MY; Mead ME; Lee MK; Ostrem Loss EM; Kim SC; Rokas A; Yu JH
    mBio; 2018 Aug; 9(4):. PubMed ID: 30131357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HdaA, a major class 2 histone deacetylase of Aspergillus nidulans, affects growth under conditions of oxidative stress.
    Tribus M; Galehr J; Trojer P; Brosch G; Loidl P; Marx F; Haas H; Graessle S
    Eukaryot Cell; 2005 Oct; 4(10):1736-45. PubMed ID: 16215180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RcLS2F - A Novel Fungal Class 1 KDAC Co-repressor Complex in
    Bauer I; Gross S; Merschak P; Kremser L; Karahoda B; Bayram ÖS; Abt B; Binder U; Gsaller F; Lindner H; Bayram Ö; Brosch G; Graessle S
    Front Microbiol; 2020; 11():43. PubMed ID: 32117098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased metabolite production by deletion of an HDA1-type histone deacetylase in the phytopathogenic fungi, Magnaporthe oryzae (Pyricularia oryzae) and Fusarium asiaticum.
    Maeda K; Izawa M; Nakajima Y; Jin Q; Hirose T; Nakamura T; Koshino H; Kanamaru K; Ohsato S; Kamakura T; Kobayashi T; Yoshida M; Kimura M
    Lett Appl Microbiol; 2017 Nov; 65(5):446-452. PubMed ID: 28862744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-scale metabolomics reveals a complex response of Aspergillus nidulans to epigenetic perturbation.
    Albright JC; Henke MT; Soukup AA; McClure RA; Thomson RJ; Keller NP; Kelleher NL
    ACS Chem Biol; 2015 Jun; 10(6):1535-41. PubMed ID: 25815712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An inhibitor-resistant histone deacetylase in the plant pathogenic fungus Cochliobolus carbonum.
    Brosch G; Dangl M; Graessle S; Loidl A; Trojer P; Brandtner EM; Mair K; Walton JD; Baidyaroy D; Loidl P
    Biochemistry; 2001 Oct; 40(43):12855-63. PubMed ID: 11669622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterologous Expression of Fungal Secondary Metabolite Pathways in the Aspergillus nidulans Host System.
    van Dijk JW; Wang CC
    Methods Enzymol; 2016; 575():127-42. PubMed ID: 27417927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Type I and II PRMTs regulate catabolic as well as detoxifying processes in Aspergillus nidulans.
    Bauer I; Lechner L; Pidroni A; Petrone AM; Merschak P; Lindner H; Kremser L; Graessle S; Golderer G; Allipour S; Brosch G
    Fungal Genet Biol; 2019 Aug; 129():86-100. PubMed ID: 31145992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Bcl-2 Associated Athanogene (
    Jain S; Wiemann P; Thill E; Williams B; Keller NP; Kabbage M
    Front Microbiol; 2018; 9():1316. PubMed ID: 29963036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters.
    Netzker T; Fischer J; Weber J; Mattern DJ; König CC; Valiante V; Schroeckh V; Brakhage AA
    Front Microbiol; 2015; 6():299. PubMed ID: 25941517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of secondary metabolism in filamentous fungi.
    Yu JH; Keller N
    Annu Rev Phytopathol; 2005; 43():437-58. PubMed ID: 16078891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional analysis of histone deacetylase and its role in stress response, drug resistance and solid-state cultivation in Aspergillus oryzae.
    Kawauchi M; Iwashita K
    J Biosci Bioeng; 2014 Aug; 118(2):172-6. PubMed ID: 24613105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.