These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 30460100)

  • 21. Amyloid beta-peptide stimulates nitric oxide production in astrocytes through an NFkappaB-dependent mechanism.
    Akama KT; Albanese C; Pestell RG; Van Eldik LJ
    Proc Natl Acad Sci U S A; 1998 May; 95(10):5795-800. PubMed ID: 9576964
    [TBL] [Abstract][Full Text] [Related]  

  • 22. All roads lead to heterogeneity: The complex involvement of astrocytes and microglia in the pathogenesis of Alzheimer's disease.
    St-Pierre MK; VanderZwaag J; Loewen S; Tremblay MÈ
    Front Cell Neurosci; 2022; 16():932572. PubMed ID: 36035256
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular Mechanisms of Synaptotoxicity and Neuroinflammation in Alzheimer's Disease.
    Marttinen M; Takalo M; Natunen T; Wittrahm R; Gabbouj S; Kemppainen S; Leinonen V; Tanila H; Haapasalo A; Hiltunen M
    Front Neurosci; 2018; 12():963. PubMed ID: 30618585
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer's disease.
    Agostinho P; Cunha RA; Oliveira C
    Curr Pharm Des; 2010; 16(25):2766-78. PubMed ID: 20698820
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Elucidating the Interactive Roles of Glia in Alzheimer's Disease Using Established and Newly Developed Experimental Models.
    Chun H; Marriott I; Lee CJ; Cho H
    Front Neurol; 2018; 9():797. PubMed ID: 30319529
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Early miR-155 upregulation contributes to neuroinflammation in Alzheimer's disease triple transgenic mouse model.
    Guedes JR; Custódia CM; Silva RJ; de Almeida LP; Pedroso de Lima MC; Cardoso AL
    Hum Mol Genet; 2014 Dec; 23(23):6286-301. PubMed ID: 24990149
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glial activation in Alzheimer's disease: the role of Abeta and its associated proteins.
    Meda L; Baron P; Scarlato G
    Neurobiol Aging; 2001; 22(6):885-93. PubMed ID: 11754995
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sleep Disturbance and Alzheimer's Disease: The Glial Connection.
    Sunkaria A; Bhardwaj S
    Neurochem Res; 2022 Jul; 47(7):1799-1815. PubMed ID: 35303225
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neuron-glia interactions: Molecular basis of alzheimer's disease and applications of neuroproteomics.
    Ibrahim AM; Pottoo FH; Dahiya ES; Khan FA; Kumar JBS
    Eur J Neurosci; 2020 Jul; 52(2):2931-2943. PubMed ID: 32463535
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Amyloid neurotoxicity is attenuated by metallothionein: dual mechanisms at work.
    Kim JH; Nam YP; Jeon SM; Han HS; Suk K
    J Neurochem; 2012 Jun; 121(5):751-62. PubMed ID: 22404335
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analyzing the glial proteome in Alzheimer's disease.
    Kim JH; Afridi R; Lee WH; Suk K
    Expert Rev Proteomics; 2023; 20(10):197-209. PubMed ID: 37724426
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Time Course of Recognition Memory Impairment and Glial Pathology in the hAPP-J20 Mouse Model of Alzheimer's Disease.
    Ameen-Ali KE; Simpson JE; Wharton SB; Heath PR; Sharp PS; Brezzo G; Berwick J
    J Alzheimers Dis; 2019; 68(2):609-624. PubMed ID: 30814360
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Role of Glial Cells in Synaptic Dysfunction: Insights into Alzheimer's Disease Mechanisms.
    Yu Y; Chen R; Mao K; Deng M; Li Z
    Aging Dis; 2024 Apr; 15(2):459-479. PubMed ID: 37548934
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Therapeutic potentials of plant iridoids in Alzheimer's and Parkinson's diseases: A review.
    Dinda B; Dinda M; Kulsi G; Chakraborty A; Dinda S
    Eur J Med Chem; 2019 May; 169():185-199. PubMed ID: 30877973
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neuronal and glial calcium signaling in Alzheimer's disease.
    Mattson MP; Chan SL
    Cell Calcium; 2003; 34(4-5):385-97. PubMed ID: 12909083
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Implication of Glial Metabotropic Glutamate Receptors in Alzheimer's Disease.
    de Lima IBQ; Ribeiro FM
    Curr Neuropharmacol; 2023; 21(2):164-182. PubMed ID: 34951388
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expression of differential immune factors in temporal cortex and cerebellum: the role of alpha-1-antichymotrypsin, apolipoprotein E, and reactive glia in the progression of Alzheimer's disease.
    Styren SD; Kamboh MI; DeKosky ST
    J Comp Neurol; 1998 Jul; 396(4):511-20. PubMed ID: 9651008
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scavenger Receptor-A deficiency impairs immune response of microglia and astrocytes potentiating Alzheimer's disease pathophysiology.
    Cornejo F; Vruwink M; Metz C; Muñoz P; Salgado N; Poblete J; Andrés ME; Eugenín J; von Bernhardi R
    Brain Behav Immun; 2018 Mar; 69():336-350. PubMed ID: 29246456
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic Regulation of Glia and Their Neuroinflammatory Role in Alzheimer's Disease.
    Preeti K; Sood A; Fernandes V
    Cell Mol Neurobiol; 2022 Nov; 42(8):2527-2551. PubMed ID: 34515874
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.