These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
28. Neighboring phosphoSer-Pro motifs in the undefined domain of IRAK1 impart bivalent advantage for Pin1 binding. Rogals MJ; Greenwood AI; Kwon J; Lu KP; Nicholson LK FEBS J; 2016 Dec; 283(24):4528-4548. PubMed ID: 27790836 [TBL] [Abstract][Full Text] [Related]
29. On the benefit of bivalency in peptide ligand/pin1 interactions. Daum S; Lücke C; Wildemann D; Schiene-Fischer C J Mol Biol; 2007 Nov; 374(1):147-61. PubMed ID: 17931657 [TBL] [Abstract][Full Text] [Related]
30. PIN1 in Cell Cycle Control and Cancer. Cheng CW; Tse E Front Pharmacol; 2018; 9():1367. PubMed ID: 30534074 [TBL] [Abstract][Full Text] [Related]
31. Fluorescent resonance energy transfer -based biosensor for detecting conformational changes of Pin1. Hidaka M; Okabe E; Hatakeyama K; Zook H; Uchida C; Uchida T Biochem Biophys Res Commun; 2018 Oct; 505(2):399-404. PubMed ID: 30262141 [TBL] [Abstract][Full Text] [Related]
32. Computational perspective and evaluation of plausible catalytic mechanisms of peptidyl-prolyl cis-trans isomerases. Ladani ST; Souffrant MG; Barman A; Hamelberg D Biochim Biophys Acta; 2015 Oct; 1850(10):1994-2004. PubMed ID: 25585011 [TBL] [Abstract][Full Text] [Related]
33. Aluminum(III) interferes with the structure and the activity of the peptidyl-prolyl cis-trans isomerase (Pin1): a new mechanism contributing to the pathogenesis of Alzheimer's disease and cancers? Wang JZ; Liu J; Lin T; Han YG; Luo Y; Xi L; Du LF J Inorg Biochem; 2013 Sep; 126():111-7. PubMed ID: 23806774 [TBL] [Abstract][Full Text] [Related]
34. Structural basis for phosphoserine-proline recognition by group IV WW domains. Verdecia MA; Bowman ME; Lu KP; Hunter T; Noel JP Nat Struct Biol; 2000 Aug; 7(8):639-43. PubMed ID: 10932246 [TBL] [Abstract][Full Text] [Related]
35. Conformation-directed catalysis and coupled enzyme-substrate dynamics in Pin1 phosphorylation-dependent cis-trans isomerase. Velazquez HA; Hamelberg D J Phys Chem B; 2013 Oct; 117(39):11509-17. PubMed ID: 23980573 [TBL] [Abstract][Full Text] [Related]
36. Mutational effects of Cys113 on structural dynamics of Pin1. Ikura T; Yonezawa Y; Ito N Biophys Physicobiol; 2019; 16():452-465. PubMed ID: 31984197 [TBL] [Abstract][Full Text] [Related]
37. Pinning Down the Transcription: A Role for Peptidyl-Prolyl Hu X; Chen LF Front Cell Dev Biol; 2020; 8():179. PubMed ID: 32266261 [TBL] [Abstract][Full Text] [Related]
38. Dynamic Allostery Modulates Catalytic Activity by Modifying the Hydrogen Bonding Network in the Catalytic Site of Human Pin1. Wang J; Kawasaki R; Uewaki JI; Rashid AUR; Tochio N; Tate SI Molecules; 2017 Jun; 22(6):. PubMed ID: 28617332 [TBL] [Abstract][Full Text] [Related]
39. The kingdom of the prolyl-isomerase Pin1: The structural and functional convergence and divergence of Pin1. Lee YM; Teoh DE; Yeung K; Liou YC Front Cell Dev Biol; 2022; 10():956071. PubMed ID: 36111342 [TBL] [Abstract][Full Text] [Related]
40. Complete determination of the Pin1 catalytic domain thermodynamic cycle by NMR lineshape analysis. Greenwood AI; Rogals MJ; De S; Lu KP; Kovrigin EL; Nicholson LK J Biomol NMR; 2011 Sep; 51(1-2):21-34. PubMed ID: 21947912 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]