These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Fibrillar Aβ triggers microglial proteome alterations and dysfunction in Alzheimer mouse models. Sebastian Monasor L; Müller SA; Colombo AV; Tanrioever G; König J; Roth S; Liesz A; Berghofer A; Piechotta A; Prestel M; Saito T; Saido TC; Herms J; Willem M; Haass C; Lichtenthaler SF; Tahirovic S Elife; 2020 Jun; 9():. PubMed ID: 32510331 [TBL] [Abstract][Full Text] [Related]
5. A comparative study of dietary curcumin, nanocurcumin, and other classical amyloid-binding dyes for labeling and imaging of amyloid plaques in brain tissue of 5×-familial Alzheimer's disease mice. Maiti P; Hall TC; Paladugu L; Kolli N; Learman C; Rossignol J; Dunbar GL Histochem Cell Biol; 2016 Nov; 146(5):609-625. PubMed ID: 27406082 [TBL] [Abstract][Full Text] [Related]
6. Microglia contributes to plaque growth by cell death due to uptake of amyloid β in the brain of Alzheimer's disease mouse model. Baik SH; Kang S; Son SM; Mook-Jung I Glia; 2016 Dec; 64(12):2274-2290. PubMed ID: 27658617 [TBL] [Abstract][Full Text] [Related]
7. Probing amyloid-β pathology in transgenic Alzheimer's disease (tgArcSwe) mice using MALDI imaging mass spectrometry. Carlred L; Michno W; Kaya I; Sjövall P; Syvänen S; Hanrieder J J Neurochem; 2016 Aug; 138(3):469-78. PubMed ID: 27115712 [TBL] [Abstract][Full Text] [Related]
9. Comparative analysis of amyloid-beta chemical structure and amyloid plaque morphology of transgenic mouse and Alzheimer's disease brains. Kuo YM; Kokjohn TA; Beach TG; Sue LI; Brune D; Lopez JC; Kalback WM; Abramowski D; Sturchler-Pierrat C; Staufenbiel M; Roher AE J Biol Chem; 2001 Apr; 276(16):12991-8. PubMed ID: 11152675 [TBL] [Abstract][Full Text] [Related]
10. Micro-Raman spectroscopy of lipid halo and dense-core amyloid plaques: aging process characterization in the Alzheimer's disease APPswePS1ΔE9 mouse model. Fonseca EA; Lafeta L; Luiz Campos J; Cunha R; Barbosa A; Romano-Silva MA; Vieira R; Malard LM; Jorio A Analyst; 2021 Sep; 146(19):6014-6025. PubMed ID: 34505596 [TBL] [Abstract][Full Text] [Related]
11. The search for a unique Raman signature of amyloid-beta plaques in human brain tissue from Alzheimer's disease patients. Lochocki B; Morrema THJ; Ariese F; Hoozemans JJM; de Boer JF Analyst; 2020 Mar; 145(5):1724-1736. PubMed ID: 31907497 [TBL] [Abstract][Full Text] [Related]
12. Detection of Aβ plaque-associated astrogliosis in Alzheimer's disease brain by spectroscopic imaging and immunohistochemistry. Palombo F; Tamagnini F; Jeynes JCG; Mattana S; Swift I; Nallala J; Hancock J; Brown JT; Randall AD; Stone N Analyst; 2018 Feb; 143(4):850-857. PubMed ID: 29230441 [TBL] [Abstract][Full Text] [Related]
13. Label-free vibrational imaging of different Aβ plaque types in Alzheimer's disease reveals sequential events in plaque development. Röhr D; Boon BDC; Schuler M; Kremer K; Hoozemans JJM; Bouwman FH; El-Mashtoly SF; Nabers A; Großerueschkamp F; Rozemuller AJM; Gerwert K Acta Neuropathol Commun; 2020 Dec; 8(1):222. PubMed ID: 33308303 [TBL] [Abstract][Full Text] [Related]
14. Hyperspectral Raman imaging of neuritic plaques and neurofibrillary tangles in brain tissue from Alzheimer's disease patients. Michael R; Lenferink A; Vrensen GFJM; Gelpi E; Barraquer RI; Otto C Sci Rep; 2017 Nov; 7(1):15603. PubMed ID: 29142266 [TBL] [Abstract][Full Text] [Related]
15. High throughput object-based image analysis of β-amyloid plaques in human and transgenic mouse brain. Samaroo HD; Opsahl AC; Schreiber J; O'Neill SM; Marconi M; Qian J; Carvajal-Gonzalez S; Tate B; Milici AJ; Bales KR; Stephenson DT J Neurosci Methods; 2012 Feb; 204(1):179-188. PubMed ID: 22019329 [TBL] [Abstract][Full Text] [Related]
16. Shedding Light on the Molecular Pathology of Amyloid Plaques in Transgenic Alzheimer's Disease Mice Using Multimodal MALDI Imaging Mass Spectrometry. Kaya I; Zetterberg H; Blennow K; Hanrieder J ACS Chem Neurosci; 2018 Jul; 9(7):1802-1817. PubMed ID: 29648443 [TBL] [Abstract][Full Text] [Related]
17. Fibrillar Amyloid-β Accumulation Triggers an Inflammatory Mechanism Leading to Hyperphosphorylation of the Carboxyl-Terminal End of Tau Polypeptide in the Hippocampal Formation of the 3×Tg-AD Transgenic Mouse. Ontiveros-Torres MÁ; Labra-Barrios ML; Díaz-Cintra S; Aguilar-Vázquez AR; Moreno-Campuzano S; Flores-Rodríguez P; Luna-Herrera C; Mena R; Perry G; Florán-Garduño B; Luna-Muñoz J; Luna-Arias JP J Alzheimers Dis; 2016 Mar; 52(1):243-69. PubMed ID: 27031470 [TBL] [Abstract][Full Text] [Related]
18. A Study of Amyloid-β and Phosphotau in Plaques and Neurons in the Hippocampus of Alzheimer's Disease Patients. Furcila D; DeFelipe J; Alonso-Nanclares L J Alzheimers Dis; 2018; 64(2):417-435. PubMed ID: 29914033 [TBL] [Abstract][Full Text] [Related]
19. MRI and histological analysis of beta-amyloid plaques in both human Alzheimer's disease and APP/PS1 transgenic mice. Meadowcroft MD; Connor JR; Smith MB; Yang QX J Magn Reson Imaging; 2009 May; 29(5):997-1007. PubMed ID: 19388095 [TBL] [Abstract][Full Text] [Related]
20. Chemical imaging of evolving amyloid plaque pathology and associated Aβ peptide aggregation in a transgenic mouse model of Alzheimer's disease. Michno W; Wehrli P; Meier SR; Sehlin D; Syvänen S; Zetterberg H; Blennow K; Hanrieder J J Neurochem; 2020 Mar; 152(5):602-616. PubMed ID: 31605538 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]