These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 30460713)
1. One-sample aggregate data meta-analysis of medians. McGrath S; Zhao X; Qin ZZ; Steele R; Benedetti A Stat Med; 2019 Mar; 38(6):969-984. PubMed ID: 30460713 [TBL] [Abstract][Full Text] [Related]
2. Standard error estimation in meta-analysis of studies reporting medians. McGrath S; Katzenschlager S; Zimmer AJ; Seitel A; Steele R; Benedetti A Stat Methods Med Res; 2023 Feb; 32(2):373-388. PubMed ID: 36412105 [TBL] [Abstract][Full Text] [Related]
3. Meta-analysis of the difference of medians. McGrath S; Sohn H; Steele R; Benedetti A Biom J; 2020 Jan; 62(1):69-98. PubMed ID: 31553488 [TBL] [Abstract][Full Text] [Related]
4. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
5. Simulation-based estimation of mean and standard deviation for meta-analysis via Approximate Bayesian Computation (ABC). Kwon D; Reis IM BMC Med Res Methodol; 2015 Aug; 15():61. PubMed ID: 26264850 [TBL] [Abstract][Full Text] [Related]
6. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. Wan X; Wang W; Liu J; Tong T BMC Med Res Methodol; 2014 Dec; 14():135. PubMed ID: 25524443 [TBL] [Abstract][Full Text] [Related]
7. Statistical methodology for estimating the mean difference in a meta-analysis without study-specific variance information. Sangnawakij P; Böhning D; Adams S; Stanton M; Holling H Stat Med; 2017 Apr; 36(9):1395-1413. PubMed ID: 28168731 [TBL] [Abstract][Full Text] [Related]
8. Estimating the sample mean and standard deviation from commonly reported quantiles in meta-analysis. McGrath S; Zhao X; Steele R; Thombs BD; Benedetti A; Stat Methods Med Res; 2020 Sep; 29(9):2520-2537. PubMed ID: 32292115 [TBL] [Abstract][Full Text] [Related]
9. Ratio of geometric means to analyze continuous outcomes in meta-analysis: comparison to mean differences and ratio of arithmetic means using empiric data and simulation. Friedrich JO; Adhikari NK; Beyene J Stat Med; 2012 Jul; 31(17):1857-86. PubMed ID: 22438170 [TBL] [Abstract][Full Text] [Related]
10. One-stage random effects meta-analysis using linear mixed models for aggregate continuous outcome data. Papadimitropoulou K; Stijnen T; Dekkers OM; le Cessie S Res Synth Methods; 2019 Sep; 10(3):360-375. PubMed ID: 30523676 [TBL] [Abstract][Full Text] [Related]
11. Robust rank-based meta-analyses for two-sample designs with application to platelet counts of malaria infection data. Lang Y; McKean JW; Ozturk O Stat Med; 2023 Jul; 42(17):2887-2913. PubMed ID: 37132169 [TBL] [Abstract][Full Text] [Related]
12. An improved method for bivariate meta-analysis when within-study correlations are unknown. Hong C; D Riley R; Chen Y Res Synth Methods; 2018 Mar; 9(1):73-88. PubMed ID: 29055096 [TBL] [Abstract][Full Text] [Related]
13. Meta-analysis of a continuous outcome combining individual patient data and aggregate data: a method based on simulated individual patient data. Yamaguchi Y; Sakamoto W; Goto M; Staessen JA; Wang J; Gueyffier F; Riley RD Res Synth Methods; 2014 Dec; 5(4):322-51. PubMed ID: 26052956 [TBL] [Abstract][Full Text] [Related]
14. Meta-analysis without study-specific variance information: Heterogeneity case. Sangnawakij P; Böhning D; Niwitpong SA; Adams S; Stanton M; Holling H Stat Methods Med Res; 2019 Jan; 28(1):196-210. PubMed ID: 28681700 [TBL] [Abstract][Full Text] [Related]
15. Meta-analysis using individual participant data: one-stage and two-stage approaches, and why they may differ. Burke DL; Ensor J; Riley RD Stat Med; 2017 Feb; 36(5):855-875. PubMed ID: 27747915 [TBL] [Abstract][Full Text] [Related]
16. Dependent effect sizes in meta-analysis: incorporating the degree of interdependence. Cheung SF; Chan DK J Appl Psychol; 2004 Oct; 89(5):780-91. PubMed ID: 15506860 [TBL] [Abstract][Full Text] [Related]
17. A recursive partitioning approach for subgroup identification in individual patient data meta-analysis. Mistry D; Stallard N; Underwood M Stat Med; 2018 Apr; 37(9):1550-1561. PubMed ID: 29383818 [TBL] [Abstract][Full Text] [Related]
18. Inference for correlated effect sizes using multiple univariate meta-analyses. Chen Y; Cai Y; Hong C; Jackson D Stat Med; 2016 Apr; 35(9):1405-22. PubMed ID: 26537017 [TBL] [Abstract][Full Text] [Related]
19. Meta-analysis of continuous outcomes: Using pseudo IPD created from aggregate data to adjust for baseline imbalance and assess treatment-by-baseline modification. Papadimitropoulou K; Stijnen T; Riley RD; Dekkers OM; le Cessie S Res Synth Methods; 2020 Nov; 11(6):780-794. PubMed ID: 32643264 [TBL] [Abstract][Full Text] [Related]
20. A generalized-weights solution to sample overlap in meta-analysis. Bom PRD; Rachinger H Res Synth Methods; 2020 Nov; 11(6):812-832. PubMed ID: 32790019 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]