These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 30460951)

  • 21. Mechanisms for dehydrogenation and hydrogenation of N-heterocycles using PNP-pincer-supported iron catalysts: a density functional study.
    Sawatlon B; Surawatanawong P
    Dalton Trans; 2016 Oct; 45(38):14965-78. PubMed ID: 27550424
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular electrocatalysts for oxidation of hydrogen using earth-abundant metals: shoving protons around with proton relays.
    Bullock RM; Helm ML
    Acc Chem Res; 2015 Jul; 48(7):2017-26. PubMed ID: 26079983
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reversible Heterolytic Cleavage of the H-H Bond by Molybdenum Complexes: Controlling the Dynamics of Exchange Between Proton and Hydride.
    Zhang S; Appel AM; Bullock RM
    J Am Chem Soc; 2017 May; 139(21):7376-7387. PubMed ID: 28467854
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bio-inspired transition metal-organic hydride conjugates for catalysis of transfer hydrogenation: experiment and theory.
    McSkimming A; Chan B; Bhadbhade MM; Ball GE; Colbran SB
    Chemistry; 2015 Feb; 21(7):2821-34. PubMed ID: 25504622
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design of effective zeolite catalysts for the complete hydrogenation of CO2.
    Chan B; Radom L
    J Am Chem Soc; 2006 Apr; 128(16):5322-3. PubMed ID: 16620086
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrogenation of Carbon Dioxide to Methanol Catalyzed by Iron, Cobalt, and Manganese Cyclopentadienone Complexes: Mechanistic Insights and Computational Design.
    Ge H; Chen X; Yang X
    Chemistry; 2017 Jul; 23(37):8850-8856. PubMed ID: 28409860
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A computational study on ligand assisted vs. ligand participation mechanisms for CO
    Mandal SC; Rawat KS; Pathak B
    Phys Chem Chem Phys; 2019 Feb; 21(7):3932-3941. PubMed ID: 30702721
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Charge effects regulate reversible CO
    Geri JB; Ciatti JL; Szymczak NK
    Chem Commun (Camb); 2018 Jul; 54(56):7790-7793. PubMed ID: 29943782
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A pendant proton shuttle on [Fe
    Loewen ND; Thompson EJ; Kagan M; Banales CL; Myers TW; Fettinger JC; Berben LA
    Chem Sci; 2016 Apr; 7(4):2728-2735. PubMed ID: 28660048
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metal
    Aster A; Wang S; Mirmohades M; Esmieu C; Berggren G; Hammarström L; Lomoth R
    Chem Sci; 2019 Jun; 10(21):5582-5588. PubMed ID: 31293742
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reversible Hydride Transfer to N,N'-Diarylimidazolinium Cations from Hydrogen Catalyzed by Transition Metal Complexes Mimicking the Reaction of [Fe]-Hydrogenase.
    Hatazawa M; Yoshie N; Seino H
    Inorg Chem; 2017 Jul; 56(14):8087-8099. PubMed ID: 28654277
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanism of Nitrogenase H
    Khadka N; Milton RD; Shaw S; Lukoyanov D; Dean DR; Minteer SD; Raugei S; Hoffman BM; Seefeldt LC
    J Am Chem Soc; 2017 Sep; 139(38):13518-13524. PubMed ID: 28851217
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Insight into the electronic effect of phosphine ligand on Rh catalyzed CO2 hydrogenation by investigating the reaction mechanism.
    Ni SF; Dang L
    Phys Chem Chem Phys; 2016 Feb; 18(6):4860-70. PubMed ID: 26804824
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanistic insights into iron catalyzed dehydrogenation of formic acid: β-hydride elimination vs. direct hydride transfer.
    Yang X
    Dalton Trans; 2013 Sep; 42(33):11987-91. PubMed ID: 23846167
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Role of Proton Shuttles in the Reversible Activation of Hydrogen via Metal-Ligand Cooperation.
    Smith NE; Bernskoetter WH; Hazari N
    J Am Chem Soc; 2019 Oct; 141(43):17350-17360. PubMed ID: 31617710
    [TBL] [Abstract][Full Text] [Related]  

  • 36. One site is enough: a theoretical investigation of iron-catalyzed dehydrogenation of formic Acid.
    Sánchez-de-Armas R; Xue L; Ahlquist MS
    Chemistry; 2013 Sep; 19(36):11869-73. PubMed ID: 23907850
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanistic Insight into the Synergetic Interaction of Ammonia Borane and Water on ZIF-67-Derived Co@Porous Carbon for Controlled Generation of Dihydrogen.
    Fang MH; Wu SY; Chang YH; Narwane M; Chen BH; Liu WL; Kurniawan D; Chiang WH; Lin CH; Chuang YC; Hsu IJ; Chen HT; Lu TT
    ACS Appl Mater Interfaces; 2021 Oct; 13(40):47465-47477. PubMed ID: 34592812
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reversible Hydrogenation of Carbon Dioxide to Formic Acid and Methanol: Lewis Acid Enhancement of Base Metal Catalysts.
    Bernskoetter WH; Hazari N
    Acc Chem Res; 2017 Apr; 50(4):1049-1058. PubMed ID: 28306247
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Iron Dihydride Complex Stabilized by an All-Phosphorus-Based Pincer Ligand and Carbon Monoxide.
    Pandey B; Krause JA; Guan H
    Inorg Chem; 2022 Jul; 61(29):11143-11155. PubMed ID: 35816559
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Catalytic reactivity of an iridium complex with a proton responsive N-donor ligand in CO
    Gunasekar GH; Yoon Y; Baek IH; Yoon S
    RSC Adv; 2018 Jan; 8(3):1346-1350. PubMed ID: 35540928
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.