These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 30461332)
1. Toxicity of ZnO nanoparticles (NPs) to THP-1 macrophages: interactions with saturated or unsaturated free fatty acids. Jiang M; Wu B; Sun Y; Ding Y; Xie Y; Liu L; Cao Y Toxicol Mech Methods; 2019 May; 29(4):291-299. PubMed ID: 30461332 [TBL] [Abstract][Full Text] [Related]
2. Influence of bovine serum albumin pre-incubation on toxicity and ER stress-apoptosis gene expression in THP-1 macrophages exposed to ZnO nanoparticles. Liang H; He T; Long J; Liu L; Liao G; Ding Y; Cao Y Toxicol Mech Methods; 2018 Oct; 28(8):587-598. PubMed ID: 29783874 [TBL] [Abstract][Full Text] [Related]
3. Toxicity of ZnO nanoparticles (NPs) with or without hydrophobic surface coating to THP-1 macrophages: interactions with BSA or oleate-BSA. Li X; Fang X; Ding Y; Li J; Cao Y Toxicol Mech Methods; 2018 Sep; 28(7):520-528. PubMed ID: 29697006 [TBL] [Abstract][Full Text] [Related]
4. The effects of endoplasmic reticulum stress inducer thapsigargin on the toxicity of ZnO or TiO Gu Y; Cheng S; Chen G; Shen Y; Li X; Jiang Q; Li J; Cao Y Toxicol Mech Methods; 2017 Mar; 27(3):191-200. PubMed ID: 27997269 [TBL] [Abstract][Full Text] [Related]
5. Influence of pristine and hydrophobic ZnO nanoparticles on cytotoxicity and endoplasmic reticulum (ER) stress-autophagy-apoptosis gene expression in A549-macrophage co-culture. Liu T; Liang H; Liu L; Gong Y; Ding Y; Liao G; Cao Y Ecotoxicol Environ Saf; 2019 Jan; 167():188-195. PubMed ID: 30340083 [TBL] [Abstract][Full Text] [Related]
6. 3-Hydroxyflavone enhances the toxicity of ZnO nanoparticles in vitro. Luo Y; Wu C; Liu L; Gong Y; Peng S; Xie Y; Cao Y J Appl Toxicol; 2018 Sep; 38(9):1206-1214. PubMed ID: 29691881 [TBL] [Abstract][Full Text] [Related]
7. The endoplasmic reticulum stress inducer thapsigargin enhances the toxicity of ZnO nanoparticles to macrophages and macrophage-endothelial co-culture. Chen G; Shen Y; Li X; Jiang Q; Cheng S; Gu Y; Liu L; Cao Y Environ Toxicol Pharmacol; 2017 Mar; 50():103-110. PubMed ID: 28171821 [TBL] [Abstract][Full Text] [Related]
8. Combined effects of low levels of palmitate on toxicity of ZnO nanoparticles to THP-1 macrophages. Jiang Q; Li X; Cheng S; Gu Y; Chen G; Shen Y; Xie Y; Cao Y Environ Toxicol Pharmacol; 2016 Dec; 48():103-109. PubMed ID: 27770658 [TBL] [Abstract][Full Text] [Related]
9. Palmitate enhanced the cytotoxicity of ZnO nanomaterials possibly by promoting endoplasmic reticulum stress. Chen J; Yang T; Long J; Ding Y; Li J; Li X; Cao Y J Appl Toxicol; 2019 May; 39(5):798-806. PubMed ID: 30620997 [TBL] [Abstract][Full Text] [Related]
10. Changes of lipid profiles in human umbilical vein endothelial cells exposed to zirconia nanoparticles with or without the presence of free fatty acids. Cheng X; Guo H; Xian Y; Xie X J Appl Toxicol; 2021 May; 41(5):765-774. PubMed ID: 33222186 [TBL] [Abstract][Full Text] [Related]
11. Cytotoxicity and ER stress-apoptosis gene expression in ZnO nanoparticle exposed THP-1 macrophages: influence of pre-incubation with BSA or palmitic acids complexed to BSA. Gong Y; Li X; Liao G; Ding Y; Li J; Cao Y RSC Adv; 2018 Apr; 8(28):15380-15388. PubMed ID: 35539503 [TBL] [Abstract][Full Text] [Related]
12. Endoplasmic reticulum stress induced by zinc oxide nanoparticles is an earlier biomarker for nanotoxicological evaluation. Chen R; Huo L; Shi X; Bai R; Zhang Z; Zhao Y; Chang Y; Chen C ACS Nano; 2014 Mar; 8(3):2562-74. PubMed ID: 24490819 [TBL] [Abstract][Full Text] [Related]
14. Defect-induced electronic states amplify the cellular toxicity of ZnO nanoparticles. Persaud I; Raghavendra AJ; Paruthi A; Alsaleh NB; Minarchick VC; Roede JR; Podila R; Brown JM Nanotoxicology; 2020 Mar; 14(2):145-161. PubMed ID: 31553248 [TBL] [Abstract][Full Text] [Related]
15. Cytotoxicity, oxidative stress and inflammation induced by ZnO nanoparticles in endothelial cells: interaction with palmitate or lipopolysaccharide. Gong Y; Ji Y; Liu F; Li J; Cao Y J Appl Toxicol; 2017 Aug; 37(8):895-901. PubMed ID: 27862064 [TBL] [Abstract][Full Text] [Related]
16. Size dependent effect of ZnO nanoparticles on endoplasmic reticulum stress signaling pathway in murine liver. Kuang H; Yang P; Yang L; Aguilar ZP; Xu H J Hazard Mater; 2016 Nov; 317():119-126. PubMed ID: 27262279 [TBL] [Abstract][Full Text] [Related]
17. Molecular mechanisms underlying zinc oxide nanoparticle induced insulin resistance in mice. Hu H; Guo Q; Fan X; Wei X; Yang D; Zhang B; Liu J; Wu Q; Oh Y; Feng Y; Chen K; Hou L; Gu N Nanotoxicology; 2020 Feb; 14(1):59-76. PubMed ID: 31519126 [TBL] [Abstract][Full Text] [Related]
18. ZnO nanoparticles and organic chemical UV-filters are equally well tolerated by human immune cells. O'Keefe SJ; Feltis BN; Piva TJ; Turney TW; Wright PF Nanotoxicology; 2016 Nov; 10(9):1287-96. PubMed ID: 27345703 [TBL] [Abstract][Full Text] [Related]
19. Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and Ng CT; Yong LQ; Hande MP; Ong CN; Yu LE; Bay BH; Baeg GH Int J Nanomedicine; 2017; 12():1621-1637. PubMed ID: 28280330 [TBL] [Abstract][Full Text] [Related]
20. Zinc-Oxide Nanoparticles Exhibit Genotoxic, Clastogenic, Cytotoxic and Actin Depolymerization Effects by Inducing Oxidative Stress Responses in Macrophages and Adult Mice. Pati R; Das I; Mehta RK; Sahu R; Sonawane A Toxicol Sci; 2016 Apr; 150(2):454-72. PubMed ID: 26794139 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]