These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 30461740)
1. Analysis of a heterodyne detection system affected by irradiance and phase fluctuations in slant atmospheric turbulence. Tan Z; Ke X Appl Opt; 2018 Nov; 57(32):9596-9603. PubMed ID: 30461740 [TBL] [Abstract][Full Text] [Related]
3. Effect of angle-of-arrival fluctuation on heterodyne detection in slant atmospheric turbulence. Ke X; Tan Z Appl Opt; 2018 Feb; 57(5):1083-1090. PubMed ID: 29469891 [TBL] [Abstract][Full Text] [Related]
4. Effect of beam mode of partially Gaussian Schell-model beam on a heterodyne detection system in turbulence. Kun Z; Kong YX; Lei SC; Yu J; Liu J Appl Opt; 2020 Jun; 59(16):4977-4987. PubMed ID: 32543495 [TBL] [Abstract][Full Text] [Related]
5. Laser Heterodyne Detection Based on Photon Time-Domain Differential Detection Avoiding the Effect of Decoherence Phase Noise. Guan C; Zhang Z; Jia F; Zhao Y Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067808 [TBL] [Abstract][Full Text] [Related]
6. Heterodyne Doppler 1-microm lidar measurement of reduced effective telescope aperture due to atmospheric turbulence. Chan KP; Killinger DK; Sugimoto N Appl Opt; 1991 Jun; 30(18):2617-27. PubMed ID: 20700251 [TBL] [Abstract][Full Text] [Related]
7. Measurements of laser phase fluctuations induced by atmospheric turbulence over 2 km and 17.5 km distances. Ridley KD Appl Opt; 2011 Sep; 50(26):5085-92. PubMed ID: 21946989 [TBL] [Abstract][Full Text] [Related]
8. Turbulence-induced fading probability in coherent optical communication through the atmosphere. Perlot N Appl Opt; 2007 Oct; 46(29):7218-26. PubMed ID: 17932533 [TBL] [Abstract][Full Text] [Related]
9. Temporal power spectra of irradiance scintillation for infrared optical waves' propagation through marine atmospheric turbulence. Cui L J Opt Soc Am A Opt Image Sci Vis; 2014 Sep; 31(9):2030-7. PubMed ID: 25401443 [TBL] [Abstract][Full Text] [Related]
10. Joint signal current probability distribution for optical heterodyne receiver arrays in the turbulent atmosphere. Churnside JH; McIntyre CM Appl Opt; 1979 Jul; 18(13):2315-22. PubMed ID: 20212652 [TBL] [Abstract][Full Text] [Related]
12. Optical communication through random atmospheric turbulence. Laussade JP; Yariv A; Comly J Appl Opt; 1969 Aug; 8(8):1607-11. PubMed ID: 20072485 [TBL] [Abstract][Full Text] [Related]
13. Influence of atmospheric phase compensation on optical heterodyne power measurements. Belmonte A Opt Express; 2008 Apr; 16(9):6756-67. PubMed ID: 18545378 [TBL] [Abstract][Full Text] [Related]
14. Imaging and target detection with a heterodyne-reception optical radar. Shapiro JH; Capron BA; Harney RC Appl Opt; 1981 Oct; 20(19):3292-313. PubMed ID: 20333146 [TBL] [Abstract][Full Text] [Related]
15. High SNR Φ-OTDR with Multi-Transverse Modes Heterodyne Matched-Filtering Technology. Liu Y; Yang J; Wu B; Lu B; Shuai L; Wang Z; Ye L; Ying K; Ye Q; Qu R; Cai H Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833536 [TBL] [Abstract][Full Text] [Related]
17. Shot noise limited heterodyne detection of CARS signals. Jurna M; Korterik JP; Otto C; Offerhaus HL Opt Express; 2007 Nov; 15(23):15207-13. PubMed ID: 19550804 [TBL] [Abstract][Full Text] [Related]
18. Atmospheric spectral model and theoretical expressions of irradiance scintillation index for optical wave propagating through moderate-to-strong non-Kolmogorov turbulence. Cui L; Xue B; Zheng S; Xue W; Bai X; Cao X; Zhou F J Opt Soc Am A Opt Image Sci Vis; 2012 Jun; 29(6):1091-8. PubMed ID: 22673440 [TBL] [Abstract][Full Text] [Related]
19. Heterodyne efficiency of a coherent free-space optical communication model through atmospheric turbulence. Ren Y; Dang A; Liu L; Guo H Appl Opt; 2012 Oct; 51(30):7246-54. PubMed ID: 23089778 [TBL] [Abstract][Full Text] [Related]