These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 30461744)

  • 1. Influence of the frequency response of the photodetector on the heterodyne interferometer-based sound pressure standards in water.
    Feng X; Yang P; He L; Wang M; Xing G
    Appl Opt; 2018 Nov; 57(32):9635-9642. PubMed ID: 30461744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calibration of high-frequency hydrophone up to 40 MHz by heterodyne interferometer.
    Yang P; Xing G; He L
    Ultrasonics; 2014 Jan; 54(1):402-7. PubMed ID: 23932658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved synthetic-heterodyne Michelson interferometer vibrometer using phase and gain control feedback.
    Galeti JH; Kitano C; Connelly MJ
    Appl Opt; 2015 Dec; 54(35):10418-24. PubMed ID: 26836865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time normalization and nonlinearity evaluation methods of the PGC-arctan demodulation in an EOM-based sinusoidal phase modulating interferometer.
    Zhang S; Chen B; Yan L; Xu Z
    Opt Express; 2018 Jan; 26(2):605-616. PubMed ID: 29401943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bandpass-sampling-based heterodyne interferometer signal acquisition for vibration measurements in primary vibration calibration.
    Yang M; Zhu H; Cai C; Wang Y; Liu Z
    Appl Opt; 2018 Oct; 57(29):8586-8592. PubMed ID: 30461929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Michelson interferometer vibrometer using self-correcting synthetic-heterodyne demodulation.
    Connelly MJ; Galeti JH; Kitano C
    Appl Opt; 2015 Jun; 54(18):5734-8. PubMed ID: 26193022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of two methods for phase response calibration of hydrophones in the frequency range 10-400 kHz.
    Hayman G; Wang Y; Robinson S
    J Acoust Soc Am; 2013 Feb; 133(2):750-9. PubMed ID: 23363094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement Method for Nonlinearity in Heterodyne Laser Interferometers Based on Double-Channel Quadrature Demodulation.
    Fu H; Ji R; Hu P; Wang Y; Wu G; Tan J
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30135415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Primary calibration of ultrasonic hydrophone using optical interferometry.
    Bacon DR
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(2):152-61. PubMed ID: 18290141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterodyne interferometer measurements of the frequency response of the manubrium tip in cat.
    Decraemer WF; Khanna SM; Funnell WR
    Hear Res; 1990 Aug; 47(3):205-17. PubMed ID: 2228804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluid velocity measurements in a microchannel performed with two new optical heterodyne microscopes.
    Lo YL; Chuang CH
    Appl Opt; 2002 Nov; 41(31):6666-75. PubMed ID: 12412658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved heterodyne system using double-passed acousto-optic frequency shifters for measuring the frequency response of photodetectors in ultrasonic applications.
    Feng X; Yang P; He L; Xing G; Wang M; Ke W
    Opt Express; 2020 Feb; 28(4):4387-4397. PubMed ID: 32121676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A synthetic heterodyne interferometer for small amplitude of vibration measurement.
    Kang S; La J; Yoon H; Park K
    Rev Sci Instrum; 2008 May; 79(5):053106. PubMed ID: 18513060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of pressure-particle velocity impedance measurement uncertainty using the Monte Carlo method.
    Brandão E; Flesch RC; Lenzi A; Flesch CA
    J Acoust Soc Am; 2011 Jul; 130(1):EL25-31. PubMed ID: 21786864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A digital heterodyne laser interferometer for studying cochlear mechanics.
    Jacob S; Johansson C; Ulfendahl M; Fridberger A
    J Neurosci Methods; 2009 May; 179(2):271-7. PubMed ID: 19428537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncertainty analysis on free-field reciprocity calibration of measurement microphones for airborne ultrasound.
    Takahashi H; Horiuchi R
    J Acoust Soc Am; 2018 Oct; 144(4):2584. PubMed ID: 30404521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic field characterization of a clinical magnetic resonance-guided high-intensity focused ultrasound system inside the magnet bore.
    Kothapalli SVVN; Altman MB; Partanen A; Wan L; Gach HM; Straube W; Hallahan DE; Chen H
    Med Phys; 2017 Sep; 44(9):4890-4899. PubMed ID: 28626862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-demodulation of high-frequency ultrasound.
    Vos HJ; Goertz DE; de Jong N
    J Acoust Soc Am; 2010 Mar; 127(3):1208-17. PubMed ID: 20329819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Note: Periodic error measurement in heterodyne interferometers using a subpicometer accuracy Fabry-Perot interferometer.
    Zhu M; Wei H; Wu X; Li Y
    Rev Sci Instrum; 2014 Aug; 85(8):086102. PubMed ID: 25173327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iterative compensation of nonlinear error of heterodyne interferometer.
    Xie J; Yan L; Chen B; Zhang S
    Opt Express; 2017 Feb; 25(4):4470-4482. PubMed ID: 28241649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.