These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 30461852)

  • 1. Recording and erasure of photorefractive holograms in undoped BTO crystal at moderate to high intensities of 639.7  nm laser under action of 532  nm laser pre-illumination.
    Lopes WR; Medeiros HFA; Santos GS; Araujo TC; Carvalho JF; Dos Santos PV; de Araujo MT
    J Opt Soc Am A Opt Image Sci Vis; 2018 Nov; 35(11):1919-1928. PubMed ID: 30461852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Volatile and permanent optical gratings recorded in Bi
    de Oliveira I; Capovilla DA
    Appl Opt; 2020 Mar; 59(8):2248-2253. PubMed ID: 32225754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large interconnects in photorefractives: grating erasure problem and a proposed solution.
    Rastani K; Hubbard WM
    Appl Opt; 1992 Feb; 31(5):598-605. PubMed ID: 20720654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of recording-beam ratio on diffraction efficiency of polarization holographic gratings in dye-doped liquid-crystal films.
    Su WC; Huang CY; Chen JY; Su WH
    Opt Lett; 2010 Feb; 35(3):405-7. PubMed ID: 20125736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parametric Extension of the Classical Exposure-Schedule Theory for Angle-Multiplexed Photorefractive Recording over Wide Angles.
    Delong ML; Duncan BD; Parker JH
    Appl Opt; 1998 May; 37(14):3015-30. PubMed ID: 18273248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of recording-erasure dynamics of storage capacity of a wavelength-multiplexed reflection-type photorefractive hologram.
    Zhou H; Zhao F; Yu FT
    Appl Opt; 1994 Jul; 33(20):4339-44. PubMed ID: 20935791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Erasure of holographic gratings in photorefractive materials with two active species.
    Carrascosa M; Agullo-Lopez F
    Appl Opt; 1988 Jul; 27(14):2851-7. PubMed ID: 20531852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Holographic writing and erasure in unipolar photorefractive materials with multiple active centers: theoretical analysis.
    Jariego F; Agulló-López F
    Appl Opt; 1991 Nov; 30(32):4615-21. PubMed ID: 20717260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal recording wavelength for maximum diffraction efficiency of thermal fixing in LiNbO3:Fe.
    Hou P; Zhi Y; Sun J; Liu L
    Appl Opt; 2011 Apr; 50(11):1554-9. PubMed ID: 21478928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Comprehensive Study of Photorefractive Properties in Poly(ethylene glycol) Dimethacrylate- Ionic Liquid Composites.
    Ellabban MA; Glavan G; Klepp J; Fally M
    Materials (Basel); 2016 Dec; 10(1):. PubMed ID: 28772368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Off-Bragg analysis of the diffraction efficiency of transmission photorefractive holograms.
    Nonaka K
    Appl Opt; 1997 Jul; 36(20):4792-800. PubMed ID: 18259280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diffraction properties of transmission photorefractive volume gratings in a cerium-doped potassium sodium strontium barium niobate crystal.
    Liang BL; Wang ZQ; Mu GG; Guan JH; Cartwright CM
    Appl Opt; 1999 Sep; 38(26):5552-5. PubMed ID: 18324065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reading and optical erasure of holograms stored by the photorefractive effect in lithium niobate.
    Moharam MG; Young L
    Appl Opt; 1978 Sep; 17(17):2773-8. PubMed ID: 20203865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective erasure of speckle-multiplexed holograms by use of a double Mach-Zehnder interferometric arrangement.
    Bunsen M; Furuta H; Okamoto A
    Appl Opt; 2006 Sep; 45(27):7035-42. PubMed ID: 16946782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orthogonal photorefractive grating storage.
    Sefler GA; Gustafson TK; Yin E; Spiridon A
    Opt Lett; 1996 Feb; 21(4):293-5. PubMed ID: 19865383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polarization dependence of holographic grating recording in azobenzene-functionalized polymers monitored by visible and infrared light.
    Sobolewska A; Bartkiewicz S; Miniewicz A; Schab-Balcerzak E
    J Phys Chem B; 2010 Aug; 114(30):9751-60. PubMed ID: 20666518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic hologram recording characteristics in DuPont photopolymers.
    Kostuk RK
    Appl Opt; 1999 Mar; 38(8):1357-63. PubMed ID: 18305753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic holographic moiré patterns in photorefractive Bi12TiO20 and small-angle measurements.
    dos Santos PA; Nunes LC; Corrêa I
    Appl Opt; 2000 Sep; 39(25):4524-8. PubMed ID: 18350039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved development of thermally fixed holograms in photorefractive LiNbO(3) crystals with high-intensity laser pulses.
    Breer S; Buse K; Rickermann F
    Opt Lett; 1998 Jan; 23(1):73-5. PubMed ID: 18084416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-stabilized recording of fixed gratings at high temperature in LiNbO3:Fe.
    von Bassewitz JP; de Oliveira I; Frejlich J
    Appl Opt; 2008 Oct; 47(29):5315-20. PubMed ID: 18846169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.