These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 30461868)

  • 1. Binary code DOE optimization for speckle suppression in a laser display.
    Yurlov V; Lapchuk A; Han K; Son SJ; Kim BH; Yu NE
    Appl Opt; 2018 Oct; 57(30):8851-8860. PubMed ID: 30461868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal speckle suppression in laser projectors using a single two-dimensional Barker code diffractive optical element.
    Lapchuk A; Kryuchyn A; Petrov V; Klymenko V
    J Opt Soc Am A Opt Image Sci Vis; 2013 Feb; 30(2):227-32. PubMed ID: 23456057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical schemes for speckle suppression by Barker code diffractive optical elements.
    Lapchuk A; Kryuchyn A; Petrov V; Shyhovets OV; Pashkevich GA; Bogdan OV; Kononov A; Klymenko A
    J Opt Soc Am A Opt Image Sci Vis; 2013 Sep; 30(9):1760-7. PubMed ID: 24323256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental evaluation of speckle suppression efficiency using a moving 2D Barker code DOE.
    Lapchuk A; Shyhovets OV; Kryuchyn A; Petrov V; Pashkevich GA; Bogdan OV; Kononov A; Klymenko A
    J Opt Soc Am A Opt Image Sci Vis; 2013 Nov; 30(11):2253-8. PubMed ID: 24322922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Full speckle suppression in laser projectors using two Barker code-type diffractive optical elements.
    Lapchuk A; Kryuchyn A; Petrov V; Yurlov V; Klymenko V
    J Opt Soc Am A Opt Image Sci Vis; 2013 Jan; 30(1):22-31. PubMed ID: 23455999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experiment evaluation of speckle suppression efficiency of 2D quasi-spiral M-sequence-based diffractive optical element.
    Lapchuk A; Pashkevich GA; Prygun OV; Yurlov V; Borodin Y; Kryuchyn A; Korchovyi AA; Shylo S
    Appl Opt; 2015 Oct; 54(28):E47-54. PubMed ID: 26479664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Speckle suppression in scanning laser display.
    Yurlov V; Lapchuk A; Yun S; Song J; Yang H
    Appl Opt; 2008 Jan; 47(2):179-87. PubMed ID: 18188199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dispersion of speckle suppression efficiency for binary DOE structures: spectral domain and coherent matrix approaches.
    Lapchuk A; Prygun O; Fu M; Le Z; Xiong Q; Kryuchyn A
    Opt Express; 2017 Jun; 25(13):14575-14597. PubMed ID: 28789043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental demonstration of a flexible DOE loop with wideband speckle suppression for laser pico-projectors.
    Lapchuk A; Gorbov I; Le Z; Xiong Q; Lu Z; Prygun O; Pankratova A
    Opt Express; 2018 Oct; 26(20):26188-26195. PubMed ID: 30469709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speckle reduction in line-scan laser projectors using binary phase codes.
    Akram MN; Kartashov V; Tong Z
    Opt Lett; 2010 Feb; 35(3):444-6. PubMed ID: 20125749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Speckle reduction using a motionless diffractive optical element.
    Ouyang G; Tong Z; Akram MN; Wang K; Kartashov V; Yan X; Chen X
    Opt Lett; 2010 Sep; 35(17):2852-4. PubMed ID: 20808346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Achromatic digital speckle pattern interferometer with constant radial in-plane sensitivity by using a diffractive optical element.
    Viotti MR; Kapp W; Albertazzi G A
    Appl Opt; 2009 Apr; 48(12):2275-81. PubMed ID: 19381178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical stress measurement by an achromatic optical digital speckle pattern interferometry strain sensor with radial in-plane sensitivity: experimental comparison with electrical strain gauges.
    Viotti MR; Albertazzi G A; Kapp WA
    Appl Opt; 2011 Mar; 50(7):1014-22. PubMed ID: 21364725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lensless optical encryption with speckle-noise suppression and QR codes.
    Cheremkhin PA; Evtikhiev NN; Krasnov VV; Rodin VG; Ryabcev IP; Shifrina AV; Starikov RS
    Appl Opt; 2021 Aug; 60(24):7336-7345. PubMed ID: 34613021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-performance laser projection display illumination system based on a diffractive optical element.
    Liang C; Zhang W; Rui D; Sui Y; Yang H
    Appl Opt; 2017 Apr; 56(10):2810-2815. PubMed ID: 28375246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on different primaries for a nearly-ultimate gamut in a laser display.
    Song H; Li H; Liu X
    Opt Express; 2018 Sep; 26(18):23436-23448. PubMed ID: 30184844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Laser speckle suppression due to dynamic multiple scattering scheme introduced by oblique incidence].
    Xu MF; Gao WH; Shi YB; Wang HQ; Du BB
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jun; 34(6):1716-21. PubMed ID: 25358195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modified Nested Barker Codes for Ultra-Wideband Signal-Code Constructions.
    Nenashev VA; Bestugin AR; Rabin AV; Solenyi SV; Nenashev SA
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal conditions for using the binary approximation of continuously self-imaging gratings.
    Piponnier M; Druart G; Guérineau N; de Bougrenet JL; Primot J
    Opt Express; 2011 Nov; 19(23):23054-66. PubMed ID: 22109185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Depth of field expansion method for integral imaging based on diffractive optical element and CNN.
    Zhou R; Wei C; Ma H; Cao S; Ahmad M; Li C; Li J; Sun Y; Wang Y; Liu J
    Opt Express; 2023 Nov; 31(23):38146-38164. PubMed ID: 38017928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.