BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 30461873)

  • 1. Tunable broadband, wide-angle, and polarization-dependent perfect infrared absorber based on planar structure containing phase-change material.
    Wang X; Ding W; Zhu H; Liu C; Liu Y
    Appl Opt; 2018 Oct; 57(30):8915-8920. PubMed ID: 30461873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Refractory Ultra-Broadband Perfect Absorber from Visible to Near-Infrared.
    Gao H; Peng W; Chu S; Cui W; Liu Z; Yu L; Jing Z
    Nanomaterials (Basel); 2018 Dec; 8(12):. PubMed ID: 30545120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable narrowband shortwave-infrared absorber made of a nanodisk-based metasurface and a phase-change material Ge
    Zhang S; Zhou K; Cheng Q; Lu L; Li B; Song J; Luo Z
    Appl Opt; 2020 Jul; 59(21):6309-6314. PubMed ID: 32749294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies.
    Cao T; Wei CW; Simpson RE; Zhang L; Cryan MJ
    Sci Rep; 2014 Feb; 4():3955. PubMed ID: 24492415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconfigurable and spectrally switchable perfect absorber based on a phase-change material.
    Prakash S R; Kumar R; Mitra A
    Appl Opt; 2022 Apr; 61(10):2888-2897. PubMed ID: 35471366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ultra-broadband solar absorber based on α-GST/Fe metamaterials from visible light to mid-infrared.
    Pan Y; Li Y; Chen F; Cheng S; Yang W; Wang B; Yi Z; Yao D
    Phys Chem Chem Phys; 2023 Oct; 25(40):27586-27594. PubMed ID: 37807903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wavelength-tunable perfect absorber based on guided-mode resonances.
    Zhang S; Wang Y; Wang S; Zheng W
    Appl Opt; 2016 Apr; 55(12):3176-81. PubMed ID: 27140085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial.
    Lei L; Li S; Huang H; Tao K; Xu P
    Opt Express; 2018 Mar; 26(5):5686-5693. PubMed ID: 29529770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiband and broadband polarization-insensitive perfect absorber devices based on a tunable and thin double split-ring metamaterial.
    Li S; Gao J; Cao X; Zhang Z; Zheng Y; Zhang C
    Opt Express; 2015 Feb; 23(3):3523-33. PubMed ID: 25836206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small-sized long wavelength infrared absorber with perfect ultra-broadband absorptivity.
    Zhou Y; Liang Z; Qin Z; Hou E; Shi X; Zhang Y; Xiong Y; Tang Y; Fan Y; Yang F; Liang J; Chen C; Lai J
    Opt Express; 2020 Jan; 28(2):1279-1290. PubMed ID: 32121842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-scale, low-cost, broadband and tunable perfect optical absorber based on phase-change material.
    Mou N; Liu X; Wei T; Dong H; He Q; Zhou L; Zhang Y; Zhang L; Sun S
    Nanoscale; 2020 Mar; 12(9):5374-5379. PubMed ID: 31994580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active-Tuning and Polarization-Independent Absorber and Sensor in the Infrared Region Based on the Phase Change Material of Ge
    Guo Z; Yang X; Shen F; Zhou Q; Gao J; Guo K
    Sci Rep; 2018 Aug; 8(1):12433. PubMed ID: 30127365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near Perfect Absorber for Long-Wave Infrared Based on Localized Surface Plasmon Resonance.
    Sun L; Liu D; Su J; Li X; Zhou S; Wang K; Zhang Q
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wide-Angle Polarization-Independent Ultra-Broadband Absorber from Visible to Infrared.
    Liu J; Chen W; Zheng JC; Chen YS; Yang CF
    Nanomaterials (Basel); 2019 Dec; 10(1):. PubMed ID: 31861856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polarization-independent almost-perfect absorber controlled from narrowband to broadband.
    Chen J; Jin Y; Chen P; Shan Y; Xu J; Kong F; Shao J
    Opt Express; 2017 Jun; 25(12):13916-13922. PubMed ID: 28788834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture.
    Ghobadi A; Dereshgi SA; Hajian H; Bozok B; Butun B; Ozbay E
    Sci Rep; 2017 Jul; 7(1):4755. PubMed ID: 28684879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual band and tunable perfect absorber based on dual gratings-coupled graphene-dielectric multilayer structures.
    Zhao Y; Huang Q; Cai H; Lin X; He H; Ma T; Lu Y
    Opt Express; 2019 Feb; 27(4):5217-5229. PubMed ID: 30876123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks.
    Li Y; Liu Z; Zhang H; Tang P; Wu B; Liu G
    Opt Express; 2019 Apr; 27(8):11809-11818. PubMed ID: 31053021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamically Switchable Polarization-Independent Triple-Band Perfect Metamaterial Absorber Using a Phase-Change Material in the Mid-Infrared (MIR) Region.
    Xu D; Cui F; Zheng G
    Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34064884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polarization-independent and angle-insensitive broadband absorber with a target-patterned graphene layer in the terahertz regime.
    Huang X; He W; Yang F; Ran J; Gao B; Zhang WL
    Opt Express; 2018 Oct; 26(20):25558-25566. PubMed ID: 30469656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.