These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 30461905)

  • 1. Reciprocity and Babinet's principles applied to the enhancement of the electric and magnetic local density of states in integrated plasmonics on silicon photonics.
    Meza-Olivo AA; Garay-Palmett K; Blaize S; Salas-Montiel R
    Appl Opt; 2018 Oct; 57(30):9155-9163. PubMed ID: 30461905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limits of Babinet's principle for solid and hollow plasmonic antennas.
    Horák M; Křápek V; Hrtoň M; Konečná A; Ligmajer F; Stöger-Pollach M; Šamořil T; Paták A; Édes Z; Metelka O; Babocký J; Šikola T
    Sci Rep; 2019 Mar; 9(1):4004. PubMed ID: 30850673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photonic jets from Babinet's cuboid structures in the reflection mode.
    Minin IV; Minin OV; Nefedov IS
    Opt Lett; 2016 Feb; 41(4):785-7. PubMed ID: 26872188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform.
    Luo Y; Chamanzar M; Apuzzo A; Salas-Montiel R; Nguyen KN; Blaize S; Adibi A
    Nano Lett; 2015 Feb; 15(2):849-56. PubMed ID: 25562706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid Photon-Plasmon Coupling and Ultrafast Control of Nanoantennas on a Silicon Photonic Chip.
    Chen B; Bruck R; Traviss D; Khokhar AZ; Reynolds S; Thomson DJ; Mashanovich GZ; Reed GT; Muskens OL
    Nano Lett; 2018 Jan; 18(1):610-617. PubMed ID: 29272140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis and observation of the breakdown of Babinet's principle in complementary spoof surface plasmon polariton structures.
    Itami G; Sakai O
    Sci Rep; 2020 Jul; 10(1):11027. PubMed ID: 32620826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-field spectroscopic properties of complementary gold nanostructures: applicability of Babinet's principle in the optical region.
    Mizobata H; Ueno K; Misawa H; Okamoto H; Imura K
    Opt Express; 2017 Mar; 25(5):5279-5289. PubMed ID: 28380791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Terahertz near-field microscopy of complementary planar metamaterials: Babinet's principle.
    Bitzer A; Ortner A; Merbold H; Feurer T; Walther M
    Opt Express; 2011 Jan; 19(3):2537-45. PubMed ID: 21369073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broadband transparency with all-dielectric metasurfaces engraved on silicon waveguide facets: effect of inverted and extruded features based on Babinet's principle.
    Karabchevsky A; Falek E; Greenberg Y; Elman M; Keren Y; Gurwich I
    Nanoscale Adv; 2020 Jul; 2(7):2977-2985. PubMed ID: 36132410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aluminum plasmonic waveguides co-integrated with Si
    Dabos G; Manolis A; Tsiokos D; Ketzaki D; Chatzianagnostou E; Markey L; Rusakov D; Weeber JC; Dereux A; Giesecke AL; Porschatis C; Wahlbrink T; Chmielak B; Pleros N
    Sci Rep; 2018 Sep; 8(1):13380. PubMed ID: 30190537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complementary bowtie aperture for localizing and enhancing optical magnetic field.
    Zhou N; Kinzel EC; Xu X
    Opt Lett; 2011 Aug; 36(15):2764-6. PubMed ID: 21808305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental test of Babinet's principle in matter-wave diffraction.
    Kim LY; Lee JH; Kim YT; Park S; Lee CY; Schöllkopf W; Zhao BS
    Phys Chem Chem Phys; 2021 Apr; 23(13):8030-8036. PubMed ID: 33587734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic field modification of optical magnetic dipoles.
    Armelles G; Caballero B; Cebollada A; Garcia-Martin A; Meneses-Rodríguez D
    Nano Lett; 2015 Mar; 15(3):2045-9. PubMed ID: 25646869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diabolo nanoantenna for enhancing and confining the magnetic optical field.
    Grosjean T; Mivelle M; Baida FI; Burr GW; Fischer UC
    Nano Lett; 2011 Mar; 11(3):1009-13. PubMed ID: 21319837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of Colloidal PbS/CdS Quantum Dots with Plasmonic Antennas and Superconducting Detectors on a Silicon Nitride Photonic Platform.
    Elsinger L; Gourgues R; Zadeh IE; Maes J; Guardiani A; Bulgarini G; Pereira SF; Dorenbos SN; Zwiller V; Hens Z; Van Thourhout D
    Nano Lett; 2019 Aug; 19(8):5452-5458. PubMed ID: 31313928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Split ring aperture for optical magnetic field enhancement by radially polarized beam.
    Yang Y; Dai HT; Sun XW
    Opt Express; 2013 Mar; 21(6):6845-50. PubMed ID: 23546066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Babinet's principle for mutual intensity.
    Sukhov S; Batarseh M; Naraghi RR; Gemar H; Tamasan AC; Dogariu A
    Opt Lett; 2017 Oct; 42(19):3980-3983. PubMed ID: 28957177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-Dimensional Integration of Black Phosphorus Photodetector with Silicon Photonics and Nanoplasmonics.
    Chen C; Youngblood N; Peng R; Yoo D; Mohr DA; Johnson TW; Oh SH; Li M
    Nano Lett; 2017 Feb; 17(2):985-991. PubMed ID: 28072546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-numerical-aperture image simulation using Babinet's principle.
    Yang SH; Milster T; Park JR; Zhang J
    J Opt Soc Am A Opt Image Sci Vis; 2010 May; 27(5):1012-23. PubMed ID: 20448767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extraordinary magnetic field enhancement with metallic nanowire: role of surface impedance in Babinet's principle for sub-skin-depth regime.
    Koo S; Kumar MS; Shin J; Kim D; Park N
    Phys Rev Lett; 2009 Dec; 103(26):263901. PubMed ID: 20366312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.