These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 30461940)
1. Active lens for thermal aberration compensation in lithography lens. Zhao L; Dong L; Yu X; Li P; Qiao Y Appl Opt; 2018 Oct; 57(29):8654-8663. PubMed ID: 30461940 [TBL] [Abstract][Full Text] [Related]
2. Compensation of corneal oblique astigmatism by internal optics: a theoretical analysis. Liu T; Thibos LN Ophthalmic Physiol Opt; 2017 May; 37(3):305-316. PubMed ID: 28281302 [TBL] [Abstract][Full Text] [Related]
3. Apparatus and its principle for thermal aberration compensation. Yu X; Yang H; Ni M Appl Opt; 2022 Oct; 61(29):8624-8632. PubMed ID: 36255994 [TBL] [Abstract][Full Text] [Related]
4. Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye. Kelly JE; Mihashi T; Howland HC J Vis; 2004 Apr; 4(4):262-71. PubMed ID: 15134473 [TBL] [Abstract][Full Text] [Related]
5. Lens wavefront compensation for 3D photomask effects in subwavelength optical lithography. Sears MK; Bekaert J; Smith BW Appl Opt; 2013 Jan; 52(3):314-22. PubMed ID: 23338176 [TBL] [Abstract][Full Text] [Related]
6. Effects of an asymmetrically molded plastic objective lens on the push-pull tracking-error signal in an optical disk drive. Hung KM Appl Opt; 2000 Mar; 39(8):1309-14. PubMed ID: 18338015 [TBL] [Abstract][Full Text] [Related]
7. Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism. Marcos S; Rosales P; Llorente L; Barbero S; Jiménez-Alfaro I Vision Res; 2008 Jan; 48(1):70-9. PubMed ID: 18054373 [TBL] [Abstract][Full Text] [Related]
8. Changes in monkey crystalline lens spherical aberration during simulated accommodation in a lens stretcher. Maceo Heilman B; Manns F; de Castro A; Durkee H; Arrieta E; Marcos S; Parel JM Invest Ophthalmol Vis Sci; 2015 Feb; 56(3):1743-50. PubMed ID: 25670492 [TBL] [Abstract][Full Text] [Related]
9. Image quality enhancement using original lens via optical computing. Yue T; Suo J; Xiao Y; Zhang L; Dai Q Opt Express; 2014 Dec; 22(24):29515-30. PubMed ID: 25606885 [TBL] [Abstract][Full Text] [Related]
10. Wavefront aberration compensation of projection lens using clocking lens elements. Liu C; Huang W; Shi Z; Xu W Appl Opt; 2013 Aug; 52(22):5398-401. PubMed ID: 23913057 [TBL] [Abstract][Full Text] [Related]
11. Wavefront aberration measurement method for a hyper-NA lithographic projection lens based on principal component analysis of an aerial image. Zhu B; Wang X; Li S; Yan G; Shen L; Duan L Appl Opt; 2016 Apr; 55(12):3192-8. PubMed ID: 27140087 [TBL] [Abstract][Full Text] [Related]
12. Dynamic chromatic aberration pre-compensation scheme for ultrashort petawatt laser systems. Cui Z; Kang J; Guo A; Zhu H; Yang Q; Zhu P; Sun M; Gao Q; Liu D; Ouyang X; Zhang Z; Wei H; Liang X; Zhang C; Yang S; Zhang D; Xie X; Zhu J Opt Express; 2019 Jun; 27(12):16812-16822. PubMed ID: 31252901 [TBL] [Abstract][Full Text] [Related]
13. Fast thermal aberration model for lithographic projection lenses. Zhu B; Li S; Mao Y; Wang X; Bu Y; Wang J; Sun G; Duan L Opt Express; 2019 Nov; 27(23):34038-34049. PubMed ID: 31878460 [TBL] [Abstract][Full Text] [Related]
14. Corneal and total wavefront aberrations in phakic and pseudophakic eyes after implantation of monofocal foldable intraocular lenses. Iseli HP; Jankov M; Bueeler M; Wimmersberger Y; Seiler T; Mrochen M J Cataract Refract Surg; 2006 May; 32(5):762-71. PubMed ID: 16765792 [TBL] [Abstract][Full Text] [Related]
15. High-precision compliant mechanism for lens XY micro-adjustment. Zhao L; Yu X; Li P; Qiao Y Rev Sci Instrum; 2020 Mar; 91(3):035004. PubMed ID: 32259923 [TBL] [Abstract][Full Text] [Related]
16. Adjustable slab-aberration compensator for high power slab laser. Shao C; Guo Y; Chen Z; Bo Y; Li Y; Zhang L; Yuan L; Xu Y; Meng S; Peng Q; Xu Z Opt Express; 2020 Mar; 28(6):8056-8063. PubMed ID: 32225438 [TBL] [Abstract][Full Text] [Related]
18. A preliminary in vivo assessment of higher-order aberrations induced by a silicone hydrogel monofocal contact lens. Awwad ST; Sanchez P; Sanchez A; McCulley JP; Cavanagh HD Eye Contact Lens; 2008 Jan; 34(1):2-5. PubMed ID: 18180674 [TBL] [Abstract][Full Text] [Related]
19. Compensation of chromatic errors in high na molded objective lenses. Milster TD; Gerber RE Appl Opt; 1995 Dec; 34(34):8079-80. PubMed ID: 21068919 [TBL] [Abstract][Full Text] [Related]
20. Aberration-compensated supercritical lens for sub-diffractive focusing within 20° field of view. Duan H; Wang M; Hu X; Li Z; Jiang M; Wang S; Cao Y; Li X; Qin F Opt Lett; 2023 May; 48(10):2523-2526. PubMed ID: 37186698 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]