These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 30461965)

  • 1. Design of a two-dimensional stray-light-free geometrical waveguide head-up display.
    Gu L; Cheng D; Wang Q; Hou Q; Wang Y
    Appl Opt; 2018 Nov; 57(31):9246-9256. PubMed ID: 30461965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics.
    Cheng D; Wang Y; Xu C; Song W; Jin G
    Opt Express; 2014 Aug; 22(17):20705-19. PubMed ID: 25321274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of an ultra-thin, wide-angle, stray-light-free near-eye display with a dual-layer geometrical waveguide.
    Wang Q; Cheng D; Hou Q; Gu L; Wang Y
    Opt Express; 2020 Nov; 28(23):35376-35394. PubMed ID: 33182985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a uniform-illumination two-dimensional waveguide head-up display with thin plate compensator.
    Gu L; Cheng D; Wang Q; Hou Q; Wang S; Yang T; Wang Y
    Opt Express; 2019 Apr; 27(9):12692-12709. PubMed ID: 31052807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stray light and tolerance analysis of an ultrathin waveguide display.
    Wang Q; Cheng D; Hou Q; Hu Y; Wang Y
    Appl Opt; 2015 Oct; 54(28):8354-62. PubMed ID: 26479609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design method of a wide-angle AR display with a single-layer two-dimensional pupil expansion geometrical waveguide.
    Cheng D; Wang Q; Wei L; Wang X; Zhou L; Hou Q; Duan J; Yang T; Wang Y
    Appl Opt; 2022 Jul; 61(19):5813-5822. PubMed ID: 36255817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Holographic waveguide heads-up display for longitudinal image magnification and pupil expansion.
    Bigler CM; Blanche PA; Sarma K
    Appl Opt; 2018 Mar; 57(9):2007-2013. PubMed ID: 29604038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Holographic waveguide head-up display with 2-D pupil expansion and longitudinal image magnification.
    Draper CT; Bigler CM; Mann MS; Sarma K; Blanche PA
    Appl Opt; 2019 Feb; 58(5):A251-A257. PubMed ID: 30873984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and fabrication method of holographic waveguide near-eye display with 2D eye box expansion.
    Ni D; Cheng D; Wang Y; Yang T; Wang X; Chi C; Wang Y
    Opt Express; 2023 Mar; 31(7):11019-11040. PubMed ID: 37155747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design, stray light analysis, and fabrication of a compact head-mounted display using freeform prisms.
    Cheng D; Chen H; Yao C; Hou Q; Hou W; Wei L; Yang T; Wang Y
    Opt Express; 2022 Sep; 30(20):36931-36948. PubMed ID: 36258613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of a uniform-illumination binocular waveguide display with diffraction gratings and freeform optics.
    Liu Z; Pang Y; Pan C; Huang Z
    Opt Express; 2017 Nov; 25(24):30720-30731. PubMed ID: 29221099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Examining aberrations due to depth of field in holographic pupil replication waveguide systems.
    Draper CT; Blanche PA
    Appl Opt; 2021 Feb; 60(6):1653-1659. PubMed ID: 33690502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research on a surface-relief optical waveguide augmented reality display device.
    Zhang W; Wang Z; Xu J
    Appl Opt; 2018 May; 57(14):3720-3729. PubMed ID: 29791343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-efficiency and compact two-dimensional exit pupil expansion design for diffractive waveguide based on polarization volume grating.
    Weng Y; Zhang Y; Wang W; Gu Y; Wang C; Wei R; Zhang L; Wang B
    Opt Express; 2023 Feb; 31(4):6601-6614. PubMed ID: 36823912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, analysis and optimization of a waveguide-type near-eye display using a pin-mirror array and a concaved reflector.
    Zhang Q; Piao Y; Ma S; Liu Y; Wang Y; Song W
    Opt Express; 2022 Aug; 30(18):33208-33221. PubMed ID: 36242366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of a large field-of-view see-through near to eye display with two geometrical waveguides.
    Yang J; Twardowski P; Gérard P; Fontaine J
    Opt Lett; 2016 Dec; 41(23):5426-5429. PubMed ID: 27906204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uniformity improvement of two-dimensional surface relief grating waveguide display using particle swarm optimization.
    Ni D; Cheng D; Liu Y; Wang X; Yao C; Yang T; Chi C; Wang Y
    Opt Express; 2022 Jul; 30(14):24523-24543. PubMed ID: 36237005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New light trap design for stray light reduction for a polarized scanning nephelometer.
    Hu Q; Qiu Z; Hong J; Chen D
    Rev Sci Instrum; 2019 Mar; 90(3):035113. PubMed ID: 30927789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Holographic waveguide HUD with in-line pupil expansion and 2D FOV expansion.
    Bigler CM; Mann MS; Blanche PA
    Appl Opt; 2019 Dec; 58(34):G326-G331. PubMed ID: 31873517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical system of a micro-nano high-precision star sensor based on combined stray light suppression technology.
    Meng Y; Zhong X; Liu Y; Zhang K; Ma C
    Appl Opt; 2021 Jan; 60(3):697-704. PubMed ID: 33690439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.