These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 30461988)

  • 41. Three-dimensional integral imaging with improved visualization using subpixel optical ray sensing.
    Shin D; Javidi B
    Opt Lett; 2012 Jun; 37(11):2130-2. PubMed ID: 22660144
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Depth-of-field engineering in coded aperture imaging.
    Rai MR; Rosen J
    Opt Express; 2021 Jan; 29(2):1634-1648. PubMed ID: 33726373
    [TBL] [Abstract][Full Text] [Related]  

  • 43. 3D object scaling in integral imaging display by varying the spatial ray sampling rate.
    Song YW; Javidi B; Jin F
    Opt Express; 2005 May; 13(9):3242-51. PubMed ID: 19495225
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microlens arrays for integral imaging system.
    Arai J; Kawai H; Okano F
    Appl Opt; 2006 Dec; 45(36):9066-78. PubMed ID: 17151745
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Large depth-of-field computational imaging with multi-spectral and dual-aperture optics.
    Kou T; Zhang Q; Zhang C; He T; Shen J
    Opt Express; 2022 Aug; 30(18):32540-32564. PubMed ID: 36242313
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Performance of 3D integral imaging with position uncertainty.
    Tavakoli B; Daneshpanah M; Javidi B; Watson E
    Opt Express; 2007 Sep; 15(19):11889-902. PubMed ID: 19547552
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Computational Large Field-of-View RGB-D Integral Imaging System.
    Jung G; Won YY; Yoon SM
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770713
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Experimental study of high frame rate imaging with limited diffraction beams.
    Lu JY
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(1):84-97. PubMed ID: 18244161
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Resolution improvement in optical projection tomography by the focal scanning method.
    Miao Q; Hayenga J; Meyer MG; Neumann T; Nelson AC; Seibel EJ
    Opt Lett; 2010 Oct; 35(20):3363-5. PubMed ID: 20967067
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Extending axial focus of optical coherence tomography using parallel multiple aperture synthesis.
    Bo E; Ge X; Yu X; Mo J; Liu L
    Appl Opt; 2018 May; 57(13):3556-3560. PubMed ID: 29726524
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Integral imaging with improved depth of field by use of amplitude-modulated microlens arrays.
    Martínez-Corral M; Javidi B; Martínez-Cuenca R; Saavedra G
    Appl Opt; 2004 Nov; 43(31):5806-13. PubMed ID: 15540438
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Three-dimensional profilometric reconstruction using flexible sensing integral imaging and occlusion removal.
    Shen X; Markman A; Javidi B
    Appl Opt; 2017 Mar; 56(9):D151-D157. PubMed ID: 28375371
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High-Resolution Light Field Capture With Coded Aperture.
    Wang YP; Wang LC; Kong DH; Yin BC
    IEEE Trans Image Process; 2015 Dec; 24(12):5609-18. PubMed ID: 26285152
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Concept of dual-resolution light field imaging using an organic photoelectric conversion film for high-resolution light field photography.
    Sugimura D; Kobayashi S; Hamamoto T
    Appl Opt; 2017 Nov; 56(31):8687-8698. PubMed ID: 29091683
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhancement of three-dimensional image visualization under photon-starved conditions.
    Lee J; Cho M
    Appl Opt; 2022 Jul; 61(21):6374-6382. PubMed ID: 36256253
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Speckle-illuminated Fourier ptychography: analysis of diffuser roughness and reconstruction aperture on imaging performance.
    Luan J; He X; Jiang Z; Kong Y; Wang S; Liu C
    Appl Opt; 2020 Mar; 59(7):2201-2210. PubMed ID: 32225747
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Design and modeling of three-dimensional laser imaging system based on streak tube.
    Xia W; Han S; Ullah N; Cao J; Wang L; Cao J; Cheng Y; Yu H
    Appl Opt; 2017 Jan; 56(3):487-497. PubMed ID: 28157903
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Polarization-modulated three-dimensional imaging using a large-aperture electro-optic modulator.
    Chen Z; Liu B; Wang S; Liu E
    Appl Opt; 2018 Sep; 57(27):7750-7757. PubMed ID: 30462037
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ophthalmic magnetic resonance imaging at 7 T using a 6-channel transceiver radiofrequency coil array in healthy subjects and patients with intraocular masses.
    Graessl A; Muhle M; Schwerter M; Rieger J; Oezerdem C; Santoro D; Lysiak D; Winter L; Hezel F; Waiczies S; Guthoff RF; Falke K; Hosten N; Hadlich S; Krueger PC; Langner S; Stachs O; Niendorf T
    Invest Radiol; 2014 May; 49(5):260-70. PubMed ID: 24651662
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development of a deviated focusing-based optical coherence microscope with a variable depth of focus for high-resolution imaging.
    Saleah SA; Seong D; Wijesinghe RE; Han S; Kim S; Jeon M; Kim J
    Opt Express; 2023 Jan; 31(2):1258-1268. PubMed ID: 36785165
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.