These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 30461995)
1. Simulation and assessment of solar background noise for spaceborne lidar. Zhang C; Sun X; Zhang R; Liu Y Appl Opt; 2018 Nov; 57(31):9471-9479. PubMed ID: 30461995 [TBL] [Abstract][Full Text] [Related]
2. Depolarization ratio and attenuated backscatter for nine cloud types: analyses based on collocated CALIPSO lidar and MODIS measurements. Cho HM; Yang P; Kattawar GW; Nasiri SL; Hu Y; Minnis P; Trepte C; Winker D Opt Express; 2008 Mar; 16(6):3931-48. PubMed ID: 18542490 [TBL] [Abstract][Full Text] [Related]
3. Lidar beams in opposite directions for quality assessment of Cloud-Aerosol Lidar with Orthogonal Polarization spaceborne measurements. Cuesta J; Flamant PH Appl Opt; 2010 Apr; 49(12):2232-43. PubMed ID: 20411002 [TBL] [Abstract][Full Text] [Related]
4. Comparisons of aerosol backscatter using satellite and ground lidars: implications for calibrating and validating spaceborne lidar. Gimmestad G; Forrister H; Grigas T; O'Dowd C Sci Rep; 2017 Feb; 7():42337. PubMed ID: 28198389 [TBL] [Abstract][Full Text] [Related]
5. Retrieving the microphysical properties of opaque liquid water clouds from CALIOP measurements. Zhang Y; Zhao C; Zhang K; Ke J; Che H; Shen X; Zheng Z; Liu D Opt Express; 2019 Nov; 27(23):34126-34140. PubMed ID: 31878468 [TBL] [Abstract][Full Text] [Related]
6. Influence of daylight and noise current on cloud and aerosol observations by spaceborne elastic scattering lidar. Nakajima TY; Imai T; Uchino O; Nagai T Appl Opt; 1999 Aug; 38(24):5218-28. PubMed ID: 18324021 [TBL] [Abstract][Full Text] [Related]
7. Performance estimation of space-borne high-spectral-resolution lidar for cloud and aerosol optical properties at 532 nm. Liu D; Zheng Z; Chen W; Wang Z; Li W; Ke J; Zhang Y; Chen S; Cheng C; Wang S Opt Express; 2019 Apr; 27(8):A481-A494. PubMed ID: 31052898 [TBL] [Abstract][Full Text] [Related]
8. Minimum aerosol layer detection sensitivities and their subsequent impacts on aerosol optical thickness retrievals in CALIPSO level 2 data products. Toth TD; Campbell JR; Reid JS; Tackett JL; Vaughan MA; Zhang J; Marquis JW Atmos Meas Tech; 2018 Jan; 11(1):499-514. PubMed ID: 33868502 [TBL] [Abstract][Full Text] [Related]
9. CALIOP retrieval of droplet effective radius accounting for cloud vertical homogeneity. Zang L; Rosenfeld D; Mao F; Pan Z; Zhu Y; Gong W; Wang Z Opt Express; 2021 Jul; 29(14):21921-21935. PubMed ID: 34265968 [TBL] [Abstract][Full Text] [Related]
10. Quantifying the low bias of CALIPSO's column aerosol optical depth due to undetected aerosol layers. Kim MH; Omar AH; Vaughan MA; Winker DM; Trepte CR; Hu Y; Liu Z; Kim SW J Geophys Res Atmos; 2017 Jan; 122(2):1098-1113. PubMed ID: 31534879 [TBL] [Abstract][Full Text] [Related]
11. Modeling the performance of direct-detection Doppler lidar systems including cloud and solar background variability. McGill MJ; Hart WD; McKay JA; Spinhirne JD Appl Opt; 1999 Oct; 38(30):6388-97. PubMed ID: 18324169 [TBL] [Abstract][Full Text] [Related]
12. Utilization of O Park SS; Kim J; Lee H; Torres O; Lee KM; Lee SD Atmos Chem Phys; 2016 Feb; 16(4):1987-2006. PubMed ID: 32742281 [TBL] [Abstract][Full Text] [Related]
13. Impact of solar background radiation on the accuracy of wind observations of spaceborne Doppler wind lidars based on their orbits and optical parameters. Zhang C; Sun X; Zhang R; Zhao S; Lu W; Liu Y; Fan Z Opt Express; 2019 Jun; 27(12):A936-A952. PubMed ID: 31252866 [TBL] [Abstract][Full Text] [Related]
14. Validation of an airborne high spectral resolution Lidar and its measurement for aerosol optical properties over Qinhuangdao, China. Wang Q; Bu L; Tian L; Xu J; Zhu S; Liu J Opt Express; 2020 Aug; 28(17):24471-24488. PubMed ID: 32906988 [TBL] [Abstract][Full Text] [Related]
15. In situ evaluation of spaceborne CALIOP lidar measurements of the upper-ocean particle backscattering coefficient. Lacour L; Larouche R; Babin M Opt Express; 2020 Aug; 28(18):26989-26999. PubMed ID: 32906961 [TBL] [Abstract][Full Text] [Related]
16. Determination by spaceborne backscatter lidar of the structural parameters of atmospheric scattering layers. Chazette P; Pelon J; Mégie G Appl Opt; 2001 Jul; 40(21):3428-40. PubMed ID: 18360368 [TBL] [Abstract][Full Text] [Related]
17. Analysis of the origin of peak aerosol optical depth in springtime over the Gulf of Tonkin. Shan X; Xu J; Li Y; Han F; Du X; Mao J; Chen Y; He Y; Meng F; Dai X J Environ Sci (China); 2016 Feb; 40():129-37. PubMed ID: 26969552 [TBL] [Abstract][Full Text] [Related]
18. Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman lidar and of relative humidity in combination with differential absorption lidar: performance simulations. Di Girolamo P; Behrendt A; Wulfmeyer V Appl Opt; 2006 Apr; 45(11):2474-94. PubMed ID: 16623245 [TBL] [Abstract][Full Text] [Related]
19. Passive remote sensing of altitude and optical depth of dust plumes using the oxygen A and B bands: first results from EPIC/DSCOVR at Lagrange-1 point. Xu X; Wang J; Wang Y; Zeng J; Torres O; Yang Y; Marshak A; Reid J; Miller S Geophys Res Lett; 2017 Jul; 44(14):7544-7554. PubMed ID: 32661445 [TBL] [Abstract][Full Text] [Related]
20. Remote Sensing Retrieval of Cloud Top Height Using Neural Networks and Data from Cloud-Aerosol Lidar with Orthogonal Polarization. Cheng Y; He H; Xue Q; Yang J; Zhong W; Zhu X; Peng X Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257635 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]