These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 30462024)

  • 1. Three-dimensional thermal model of a high-power diode laser bar.
    Wu DH; Zah CE; Liu X
    Appl Opt; 2018 Nov; 57(33):9868-9876. PubMed ID: 30462024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional thermal model of high-power semiconductor lasers.
    Wu DH; Zah CE; Liu X
    Appl Opt; 2019 May; 58(14):3892-3901. PubMed ID: 31158204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of submount thickness on near-field bowing of laser diode arrays.
    Zhang H; Chen T; Zhang P; Zah CE; Liu X
    Appl Opt; 2018 Oct; 57(28):8407-8411. PubMed ID: 30461795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal hydraulic performance of a microchannel heat sink for cooling a high-power diode laser bar.
    Wu DH; Zah CE; Liu X
    Appl Opt; 2019 Mar; 58(8):1966-1977. PubMed ID: 30874063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Jet-type, water-cooled heat sink that yields 255-W continuous-wave laser output at 808 nm from a 1-cm laser diode bar.
    Miyajima H; Kan H; Kanzaki T; Furuta S; Yamanaka M; Izawa Y; Nakai S
    Opt Lett; 2004 Feb; 29(3):304-6. PubMed ID: 14759059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Method for predicting junction temperature distribution in a high-power laser diode bar.
    Kim DS; Holloway C; Han B; Bar-Cohen A
    Appl Opt; 2016 Sep; 55(27):7487-96. PubMed ID: 27661573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intensification of heat transfer in high-power laser diode bars by means of porous metal heat-sink.
    Apollonov VV; Derzhavin S; Kuzminov V; Mashkovskiy D; Timoshkin V; Philonenko V
    Opt Express; 1999 Jan; 4(1):27-32. PubMed ID: 19396253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal management of a semiconductor laser array based on a graphite heat sink.
    Fang J; Zhang H; Zou Y; Shi L; Li W; Xu Y; Jin L; Li Y; Xu L; Ma X
    Appl Opt; 2019 Oct; 58(28):7708-7715. PubMed ID: 31674451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effect of Geometric Parameters on Flow and Heat Transfer Characteristics of a Double-Layer Microchannel Heat Sink for High-Power Diode Laser.
    Gao Y; Wang J; Cao M; Zang L; Liu H; Yuen MMF; Bai X; Wang Y
    Micromachines (Basel); 2022 Nov; 13(12):. PubMed ID: 36557370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Easy method to measure the packaging-induced stress of a semiconductor laser diode by lasing wavelength shifting.
    Zhang H; Fu T; Zah CE; Liu X
    Appl Opt; 2019 Aug; 58(24):6672-6677. PubMed ID: 31503599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculation of temperature profiles in solid-state laser disks mounted on multi-layered heat spreaders using Hankel transforms.
    Hodgson N; Caprara A
    Appl Opt; 2016 Dec; 55(36):10146-10157. PubMed ID: 28059257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model development and experimental validation for analyzing initial transients of irradiation of tissues during thermal therapy using short pulse lasers.
    Ganguly M; Miller S; Mitra K
    Lasers Surg Med; 2015 Nov; 47(9):711-22. PubMed ID: 26349633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semi-analytical solution for the temperature profiles in solid-state laser disks mounted on heat spreaders.
    Hodgson N; Caprara A
    Appl Opt; 2016 Jul; 55(19):5110-7. PubMed ID: 27409198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linear diode laser bar optical stretchers for cell deformation.
    Sraj I; Marr DW; Eggleton CD
    Biomed Opt Express; 2010 Aug; 1(2):482-488. PubMed ID: 21258483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal clad active fibres for power scaling and thermal management at kW power levels.
    Daniel JM; Simakov N; Hemming A; Clarkson WA; Haub J
    Opt Express; 2016 Aug; 24(16):18592-606. PubMed ID: 27505822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical simulation of high-temperature thermal contact resistance and its reduction mechanism.
    Liu D; Zhang J
    PLoS One; 2018; 13(3):e0194483. PubMed ID: 29547651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical Thermal Modeling of Metal Additive Manufacturing by Heat Sink Solution.
    Ning J; Sievers DE; Garmestani H; Liang SY
    Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31408951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of Heat Dissipation by Laser Micro Structuring for LED Module.
    Lu L; Zhang Z; Guan Y; Zheng H
    Polymers (Basel); 2018 Aug; 10(8):. PubMed ID: 30960811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional numerical analysis of convection and conduction cooling of spherical biocrystals with localized heating from synchrotron X-ray beams.
    Mhaisekar A; Kazmierczak MJ; Banerjee R
    J Synchrotron Radiat; 2005 May; 12(Pt 3):318-28. PubMed ID: 15840917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysing the Contact Conduction Influence on the Heat Transfer Intensity in the Rectangular Steel Bars Bundle.
    Kolmasiak C; Bagdasaryan V; Wyleciał T; Gała M
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.