These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 30462034)
1. UAV-based hyperspectral analysis and spectral indices constructing for quantitatively monitoring leaf nitrogen content of winter wheat. Zhu H; Liu H; Xu Y; Guijun Y Appl Opt; 2018 Sep; 57(27):7722-7732. PubMed ID: 30462034 [TBL] [Abstract][Full Text] [Related]
2. Hyperspectral characteristic analysis for leaf nitrogen content in different growth stages of winter wheat. Haiying L; Hongchun Z Appl Opt; 2016 Dec; 55(34):D151-D161. PubMed ID: 27958448 [TBL] [Abstract][Full Text] [Related]
3. Integrated Satellite, Unmanned Aerial Vehicle (UAV) and Ground Inversion of the SPAD of Winter Wheat in the Reviving Stage. Zhang S; Zhao G; Lang K; Su B; Chen X; Xi X; Zhang H Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30934683 [TBL] [Abstract][Full Text] [Related]
4. [Exploring novel hyperspectral band and key index for leaf nitrogen accumulation in wheat]. Yao X; Zhu Y; Feng W; Tian YC; Cao WX Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Aug; 29(8):2191-5. PubMed ID: 19839336 [TBL] [Abstract][Full Text] [Related]
5. Off-Nadir Hyperspectral Sensing for Estimation of Vertical Profile of Leaf Chlorophyll Content within Wheat Canopies. Kong W; Huang W; Casa R; Zhou X; Ye H; Dong Y Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29168757 [TBL] [Abstract][Full Text] [Related]
6. Potential of spectral ratio indices derived from hyperspectral LiDAR and laser-induced chlorophyll fluorescence spectra on estimating rice leaf nitrogen contents. Du L; Shi S; Yang J; Wang W; Sun J; Cheng B; Zhang Z; Gong W Opt Express; 2017 Mar; 25(6):6539-6549. PubMed ID: 28381001 [TBL] [Abstract][Full Text] [Related]
7. [Monitoring canopy nitrogen status in winter wheat of growth anaphase with hyperspectral remote sensing]. Tang Q; Li SK; Wang KR; Xie RZ; Chen B; Wang FY; Diao WY; Xiao CH Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Nov; 30(11):3061-6. PubMed ID: 21284184 [TBL] [Abstract][Full Text] [Related]
8. [Nitrogen content inversion of wheat canopy leaf based on ground spectral reflectance data]. Song X; Xu DY; Huang SM; Huang CC; Zhang SQ; Guo DD; Zhang KK; Yue K Ying Yong Sheng Tai Xue Bao; 2020 May; 31(5):1636-1644. PubMed ID: 32530242 [TBL] [Abstract][Full Text] [Related]
9. [Wheat leaf area index inversion using hyperspectral remote sensing technology]. Liang L; Yang MH; Zhang LP; Lin H Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Jun; 31(6):1658-62. PubMed ID: 21847953 [TBL] [Abstract][Full Text] [Related]
10. [Estimations of chlorophyll and water contents in live leaf of winter wheat with reflectance spectroscopy]. Ji HY; Wang PX; Yan TL Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Mar; 27(3):514-6. PubMed ID: 17554911 [TBL] [Abstract][Full Text] [Related]
11. Leaf area index estimation model for UAV image hyperspectral data based on wavelength variable selection and machine learning methods. Zhang J; Cheng T; Guo W; Xu X; Qiao H; Xie Y; Ma X Plant Methods; 2021 May; 17(1):49. PubMed ID: 33941211 [TBL] [Abstract][Full Text] [Related]
12. Estimation of Nitrogen Nutrition Status in Winter Wheat From Unmanned Aerial Vehicle Based Multi-Angular Multispectral Imagery. Lu N; Wang W; Zhang Q; Li D; Yao X; Tian Y; Zhu Y; Cao W; Baret F; Liu S; Cheng T Front Plant Sci; 2019; 10():1601. PubMed ID: 31921250 [TBL] [Abstract][Full Text] [Related]
13. [Quantitative relationships between satellite channels-based spectral parameters and wheat canopy leaf nitrogen status]. Yao X; Liu XJ; Tian YC; Cao WX; Zhu Y; Zhang Y Ying Yong Sheng Tai Xue Bao; 2013 Feb; 24(2):431-7. PubMed ID: 23705388 [TBL] [Abstract][Full Text] [Related]
14. Estimation of Leaf Nitrogen Content in Wheat Based on Fusion of Spectral Features and Deep Features from Near Infrared Hyperspectral Imagery. Yang B; Ma J; Yao X; Cao W; Zhu Y Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477350 [TBL] [Abstract][Full Text] [Related]
15. Monitoring ratio of carbon to nitrogen (C/N) in wheat and barley leaves by using spectral slope features with branch-and-bound algorithm. Xu X; Yang G; Yang X; Li Z; Feng H; Xu B; Zhao X Sci Rep; 2018 Jul; 8(1):10034. PubMed ID: 29968798 [TBL] [Abstract][Full Text] [Related]
16. [Hyperspectral remote sensing diagnosis models of rice plant nitrogen nutritional status]. Tan CW; Zhou QB; Qi L; Zhuang HY Ying Yong Sheng Tai Xue Bao; 2008 Jun; 19(6):1261-8. PubMed ID: 18808018 [TBL] [Abstract][Full Text] [Related]
17. Estimation of the Yield and Plant Height of Winter Wheat Using UAV-Based Hyperspectral Images. Tao H; Feng H; Xu L; Miao M; Yang G; Yang X; Fan L Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32102358 [TBL] [Abstract][Full Text] [Related]
18. [Estimation of winter wheat leaf nitrogen accumulation based on coupling ground- and space-remotely sensed information]. Wang LG; Tian YC; Li WL; Zhu Y Ying Yong Sheng Tai Xue Bao; 2012 Jan; 23(1):73-80. PubMed ID: 22489482 [TBL] [Abstract][Full Text] [Related]
19. Exploring novel bands and key index for evaluating leaf equivalent water thickness in wheat using hyperspectra influenced by nitrogen. Yao X; Jia W; Si H; Guo Z; Tian Y; Liu X; Cao W; Zhu Y PLoS One; 2014; 9(6):e96352. PubMed ID: 24914778 [TBL] [Abstract][Full Text] [Related]
20. [Estimation of optimum normalized difference spectral index for nitrogen accumulation in wheat leaf based on reduced precise sampling method]. Yao X; Liu XJ; Wang W; Tian YC; Cao WX; Zhu Y Ying Yong Sheng Tai Xue Bao; 2010 Dec; 21(12):3175-82. PubMed ID: 21443006 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]