These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 30462173)

  • 1. circtools-a one-stop software solution for circular RNA research.
    Jakobi T; Uvarovskii A; Dieterich C
    Bioinformatics; 2019 Jul; 35(13):2326-2328. PubMed ID: 30462173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. State-of-the-Art Circular RNA Analytics Using the Circtools Software Suite.
    Jakobi T
    Methods Mol Biol; 2024; 2765():23-46. PubMed ID: 38381332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. circMeta: a unified computational framework for genomic feature annotation and differential expression analysis of circular RNAs.
    Chen L; Wang F; Bruggeman EC; Li C; Yao B
    Bioinformatics; 2020 Jan; 36(2):539-545. PubMed ID: 31373611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational approaches for circular RNA analysis.
    Jakobi T; Dieterich C
    Wiley Interdiscip Rev RNA; 2019 May; 10(3):e1528. PubMed ID: 30788906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific identification and quantification of circular RNAs from sequencing data.
    Cheng J; Metge F; Dieterich C
    Bioinformatics; 2016 Apr; 32(7):1094-6. PubMed ID: 26556385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ularcirc: visualization and enhanced analysis of circular RNAs via back and canonical forward splicing.
    Humphreys DT; Fossat N; Demuth M; Tam PPL; Ho JWK
    Nucleic Acids Res; 2019 Nov; 47(20):e123. PubMed ID: 31435647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CircMiner: accurate and rapid detection of circular RNA through splice-aware pseudo-alignment scheme.
    Asghari H; Lin YY; Xu Y; Haghshenas E; Collins CC; Hach F
    Bioinformatics; 2020 Jun; 36(12):3703-3711. PubMed ID: 32259207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. nf-core/circrna: a portable workflow for the quantification, miRNA target prediction and differential expression analysis of circular RNAs.
    Digby B; Finn SP; Ó Broin P
    BMC Bioinformatics; 2023 Jan; 24(1):27. PubMed ID: 36694127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Computational Circular RNA Analytics from RNA-seq Data.
    Jakobi T; Dieterich C
    Methods Mol Biol; 2018; 1724():9-25. PubMed ID: 29322437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning of the back-splicing code for circular RNA formation.
    Wang J; Wang L
    Bioinformatics; 2019 Dec; 35(24):5235-5242. PubMed ID: 31077303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualization of circular RNAs and their internal splicing events from transcriptomic data.
    Zheng Y; Zhao F
    Bioinformatics; 2020 May; 36(9):2934-2935. PubMed ID: 31950978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA sequencing and Prediction Tools for Circular RNAs Analysis.
    López-Jiménez E; Rojas AM; Andrés-León E
    Adv Exp Med Biol; 2018; 1087():17-33. PubMed ID: 30259354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying circular RNA expression from RNA-seq data using model-based framework.
    Li M; Xie X; Zhou J; Sheng M; Yin X; Ko EA; Zhou T; Gu W
    Bioinformatics; 2017 Jul; 33(14):2131-2139. PubMed ID: 28334396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CircPro: an integrated tool for the identification of circRNAs with protein-coding potential.
    Meng X; Chen Q; Zhang P; Chen M
    Bioinformatics; 2017 Oct; 33(20):3314-3316. PubMed ID: 29028266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive comparison of two types of algorithm for circRNA detection from short-read RNA-Seq.
    Liu H; Akhatayeva Z; Pan C; Liao M; Lan X
    Bioinformatics; 2022 May; 38(11):3037-3043. PubMed ID: 35482518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The interplay between microRNA and alternative splicing of linear and circular RNAs in eleven plant species.
    Wang H; Wang H; Zhang H; Liu S; Wang Y; Gao Y; Xi F; Zhao L; Liu B; Reddy ASN; Lin C; Gu L
    Bioinformatics; 2019 Sep; 35(17):3119-3126. PubMed ID: 30689723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PcircRNA_finder: a software for circRNA prediction in plants.
    Chen L; Yu Y; Zhang X; Liu C; Ye C; Fan L
    Bioinformatics; 2016 Nov; 32(22):3528-3529. PubMed ID: 27493192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of Circular RNAs Using RT-qPCR After Effective Removal of Linear RNAs by Ribonuclease R.
    Vromman M; Yigit N; Verniers K; Lefever S; Vandesompele J; Volders PJ
    Curr Protoc; 2021 Jul; 1(7):e181. PubMed ID: 34232572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. circRNAprofiler: an R-based computational framework for the downstream analysis of circular RNAs.
    Aufiero S; Reckman YJ; Tijsen AJ; Pinto YM; Creemers EE
    BMC Bioinformatics; 2020 Apr; 21(1):164. PubMed ID: 32349660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Profiling and Validation of the Circular RNA Repertoire in Adult Murine Hearts.
    Jakobi T; Czaja-Hasse LF; Reinhardt R; Dieterich C
    Genomics Proteomics Bioinformatics; 2016 Aug; 14(4):216-23. PubMed ID: 27132142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.