BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 30462314)

  • 1. Design of highly active double-pseudoknotted ribozymes: a combined computational and experimental study.
    Yamagami R; Kayedkhordeh M; Mathews DH; Bevilacqua PC
    Nucleic Acids Res; 2019 Jan; 47(1):29-42. PubMed ID: 30462314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational design and experimental verification of pseudoknotted ribozymes.
    Najeh S; Zandi K; Kharma N; Perreault J
    RNA; 2023 Jun; 29(6):764-776. PubMed ID: 36868786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Design of Allosteric Ribozymes via Genetic Algorithms.
    Kaloudas D; Pavlova N; Penchovsky R
    Methods Mol Biol; 2024; 2822():443-469. PubMed ID: 38907934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of flanking regions on HDV cotranscriptional folding kinetics.
    Wang Y; Wang Z; Liu T; Gong S; Zhang W
    RNA; 2018 Sep; 24(9):1229-1240. PubMed ID: 29954950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro evolution of coenzyme-independent variants from the glmS ribozyme structural scaffold.
    Lau MW; Ferré-D'Amaré AR
    Methods; 2016 Aug; 106():76-81. PubMed ID: 27130889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysing RNA-kinetics based on folding space abstraction.
    Huang J; Voß B
    BMC Bioinformatics; 2014 Feb; 15():60. PubMed ID: 24575751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative survey of the influence of small self-cleaving ribozymes on gene expression in human cell culture.
    Kläge D; Müller E; Hartig JS
    RNA Biol; 2024 Jan; 21(1):1-11. PubMed ID: 38146121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulating RNA structure and catalysis: lessons from small cleaving ribozymes.
    Reymond C; Beaudoin JD; Perreault JP
    Cell Mol Life Sci; 2009 Dec; 66(24):3937-50. PubMed ID: 19718544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel ribozymes: discovery, catalytic mechanisms, and the quest to understand biological function.
    Weinberg CE; Weinberg Z; Hammann C
    Nucleic Acids Res; 2019 Oct; 47(18):9480-9494. PubMed ID: 31504786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frnakenstein: multiple target inverse RNA folding.
    Lyngsø RB; Anderson JW; Sizikova E; Badugu A; Hyland T; Hein J
    BMC Bioinformatics; 2012 Oct; 13():260. PubMed ID: 23043260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico design and enzymatic synthesis of functional RNA nanoparticles.
    Afonin KA; Kasprzak WK; Bindewald E; Kireeva M; Viard M; Kashlev M; Shapiro BA
    Acc Chem Res; 2014 Jun; 47(6):1731-41. PubMed ID: 24758371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-transcriptional folding of the glmS ribozyme enables a rapid response to metabolite.
    Lou Y; Woodson SA
    Nucleic Acids Res; 2024 Jan; 52(2):872-884. PubMed ID: 38000388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystallographic analysis of small ribozymes and riboswitches.
    Lippa GM; Liberman JA; Jenkins JL; Krucinska J; Salim M; Wedekind JE
    Methods Mol Biol; 2012; 848():159-84. PubMed ID: 22315069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Adaptive Defect Weighted Sampling Algorithm to Design Pseudoknotted RNA Secondary Structures.
    Zandi K; Butler G; Kharma N
    Front Genet; 2016; 7():129. PubMed ID: 27499762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pseudoknots in RNA folding landscapes.
    Kucharík M; Hofacker IL; Stadler PF; Qin J
    Bioinformatics; 2016 Jan; 32(2):187-94. PubMed ID: 26428288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic RNA synthetic biology: new principles, practices and potential.
    Li Y; Arce A; Lucci T; Rasmussen RA; Lucks JB
    RNA Biol; 2023 Jan; 20(1):817-829. PubMed ID: 38044595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular crowding overcomes the destabilizing effects of mutations in a bacterial ribozyme.
    Lee HT; Kilburn D; Behrouzi R; Briber RM; Woodson SA
    Nucleic Acids Res; 2015 Jan; 43(2):1170-6. PubMed ID: 25541198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational selection and experimental validation of allosteric ribozymes that sense a specific sequence of human telomerase reverse transcriptase mRNAs as universal anticancer therapy agents.
    Penchovsky R; Kostova GT
    Nucleic Acid Ther; 2013 Dec; 23(6):408-17. PubMed ID: 24206267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New algorithms to represent complex pseudoknotted RNA structures in dot-bracket notation.
    Antczak M; Popenda M; Zok T; Zurkowski M; Adamiak RW; Szachniuk M
    Bioinformatics; 2018 Apr; 34(8):1304-1312. PubMed ID: 29236971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput identification of synthetic riboswitches by barcode-free amplicon-sequencing in human cells.
    Strobel B; Spöring M; Klein H; Blazevic D; Rust W; Sayols S; Hartig JS; Kreuz S
    Nat Commun; 2020 Feb; 11(1):714. PubMed ID: 32024835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.