These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 30462316)

  • 1. Black spruce assimilates nitrate in boreal winter.
    Koyama LA; Kielland K
    Tree Physiol; 2019 Apr; 39(4):536-543. PubMed ID: 30462316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Will changes in root-zone temperature in boreal spring affect recovery of photosynthesis in Picea mariana and Populus tremuloides in a future climate?
    Fréchette E; Ensminger I; Bergeron Y; Gessler A; Berninger F
    Tree Physiol; 2011 Nov; 31(11):1204-16. PubMed ID: 22021010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrate reductase activity in leaves as a plant physiological indicator of in vivo biological nitrification inhibition by Brachiaria humidicola.
    Karwat H; Sparke MA; Rasche F; Arango J; Nuñez J; Rao I; Moreta D; Cadisch G
    Plant Physiol Biochem; 2019 Apr; 137():113-120. PubMed ID: 30772621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Snow Must Go On: Ground Ice Encasement, Snow Compaction and Absence of Snow Differently Cause Soil Hypoxia, CO2 Accumulation and Tree Seedling Damage in Boreal Forest.
    Martz F; Vuosku J; Ovaskainen A; Stark S; Rautio P
    PLoS One; 2016; 11(6):e0156620. PubMed ID: 27254100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulated projections of boreal forest peatland ecosystem productivity are sensitive to observed seasonality in leaf physiology†.
    Jensen AM; Warren JM; King AW; Ricciuto DM; Hanson PJ; Wullschleger SD
    Tree Physiol; 2019 Apr; 39(4):556-572. PubMed ID: 30668859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absence of snow cover reduces understory plant cover and alters plant community composition in boreal forests.
    Kreyling J; Haei M; Laudon H
    Oecologia; 2012 Feb; 168(2):577-87. PubMed ID: 21850524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The potential of NO3--N utilization by a woody shrub species Lindera triloba: a cultivation test to estimate the saturation point of soil NO3--N for plants.
    Koyama L; Tokuchi N; Hirobe M; Koba K
    ScientificWorldJournal; 2001 Nov; 1 Suppl 2():514-9. PubMed ID: 12805806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stable carbon isotope analysis reveals widespread drought stress in boreal black spruce forests.
    Walker XJ; Mack MC; Johnstone JF
    Glob Chang Biol; 2015 Aug; 21(8):3102-13. PubMed ID: 25683740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrogen-source preference in blueberry (Vaccinium sp.): Enhanced shoot nitrogen assimilation in response to direct supply of nitrate.
    Alt DS; Doyle JW; Malladi A
    J Plant Physiol; 2017 Sep; 216():79-87. PubMed ID: 28578080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size-mediated tree transpiration along soil drainage gradients in a boreal black spruce forest wildfire chronosequence.
    Angstmann JL; Ewers BE; Kwon H
    Tree Physiol; 2012 May; 32(5):599-611. PubMed ID: 22539635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying fire severity, carbon, and nitrogen emissions in Alaska's boreal forest.
    Boby LA; Schuur EA; Mack MC; Verbyla D; Johnstone JF
    Ecol Appl; 2010 Sep; 20(6):1633-47. PubMed ID: 20945764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling topographic effects on net ecosystem productivity of boreal black spruce forests.
    Grant RF
    Tree Physiol; 2004 Jan; 24(1):1-18. PubMed ID: 14652210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seasonal dynamics of stem N
    Machacova K; Vainio E; Urban O; Pihlatie M
    Nat Commun; 2019 Nov; 10(1):4989. PubMed ID: 31676776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming.
    Girardin MP; Hogg EH; Bernier PY; Kurz WA; Guo XJ; Cyr G
    Glob Chang Biol; 2016 Feb; 22(2):627-43. PubMed ID: 26507106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fuel-reduction management alters plant composition, carbon and nitrogen pools, and soil thaw in Alaskan boreal forest.
    Melvin AM; Celis G; Johnstone JF; McGuire AD; Genet H; Schuur EAG; Rupp TS; Mack MC
    Ecol Appl; 2018 Jan; 28(1):149-161. PubMed ID: 28987028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The contribution of roots and shoots to whole plant nitrate reduction in fast- and slow-growing grass species.
    Scheurwater I; Koren M; Lambers H; Atkin OK
    J Exp Bot; 2002 Jul; 53(374):1635-42. PubMed ID: 12096102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Needle age and season influence photosynthetic temperature response and total annual carbon uptake in mature Picea mariana trees.
    Jensen AM; Warren JM; Hanson PJ; Childs J; Wullschleger SD
    Ann Bot; 2015 Oct; 116(5):821-32. PubMed ID: 26220656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wood anatomical traits in black spruce reveal latent water constraints on the boreal forest.
    Puchi PF; Castagneri D; Rossi S; Carrer M
    Glob Chang Biol; 2020 Mar; 26(3):1767-1777. PubMed ID: 31692158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vertical and seasonal dynamics of fungal communities in boreal Scots pine forest soil.
    Santalahti M; Sun H; Jumpponen A; Pennanen T; Heinonsalo J
    FEMS Microbiol Ecol; 2016 Nov; 92(11):. PubMed ID: 27515733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Successional and physical controls on the retention of nitrogen in an undisturbed boreal forest ecosystem.
    Brenner RE; Boone RD; Jones JB; Lajtha K; Ruess RW
    Oecologia; 2006 Jul; 148(4):602-11. PubMed ID: 16521021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.