BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 30462480)

  • 1. Residue-Specific Conformational Heterogeneity of Proline-Rich Sequences Uncovered via Infrared Spectroscopy.
    Bukowski GS; Thielges MC
    Anal Chem; 2018 Dec; 90(24):14355-14362. PubMed ID: 30462480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of Local, Rapid Conformational Dynamics in Binding of Flexible Recognition Motifs.
    Bukowski GS; Horness RE; Thielges MC
    J Phys Chem B; 2019 Oct; 123(40):8387-8396. PubMed ID: 31535866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resolution of Site-Specific Conformational Heterogeneity in Proline-Rich Molecular Recognition by Src Homology 3 Domains.
    Horness RE; Basom EJ; Mayer JP; Thielges MC
    J Am Chem Soc; 2016 Feb; 138(4):1130-3. PubMed ID: 26784847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational heterogeneity in tails of DNA-binding proteins is augmented by proline containing repeats.
    Khare H; Dey D; Madhu C; Senapati D; Raghothama S; Govindaraju T; Ramakumar S
    Mol Biosyst; 2017 Nov; 13(12):2531-2544. PubMed ID: 29104984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvent and conformation dependence of amide I vibrations in peptides and proteins containing proline.
    Roy S; Lessing J; Meisl G; Ganim Z; Tokmakoff A; Knoester J; Jansen TL
    J Chem Phys; 2011 Dec; 135(23):234507. PubMed ID: 22191886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-Specific 1D and 2D IR Spectroscopy to Characterize the Conformations and Dynamics of Protein Molecular Recognition.
    Ramos S; Thielges MC
    J Phys Chem B; 2019 May; 123(17):3551-3566. PubMed ID: 30848912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Residual dipolar couplings in short peptides reveal systematic conformational preferences of individual amino acids.
    Dames SA; Aregger R; Vajpai N; Bernado P; Blackledge M; Grzesiek S
    J Am Chem Soc; 2006 Oct; 128(41):13508-14. PubMed ID: 17031964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elucidation of residue-level structure and dynamics of polypeptides via isotope-edited infrared spectroscopy.
    Decatur SM
    Acc Chem Res; 2006 Mar; 39(3):169-75. PubMed ID: 16548505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Conformation and Aggregation of Proline-Rich Surfactant-Like Peptides.
    Hamley IW; Castelletto V; Dehsorkhi A; Torras J; Aleman C; Portnaya I; Danino D
    J Phys Chem B; 2018 Feb; 122(6):1826-1835. PubMed ID: 29357666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bactericidal activity and poly-L-proline II conformation of the tandem repeat sequence of human salivary mucin glycoprotein (MG2).
    Antonyraj KJ; Karunakaran T; Raj PA
    Arch Biochem Biophys; 1998 Aug; 356(2):197-206. PubMed ID: 9705210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible-geometry conformational energy maps for the amino acid residue preceding a proline.
    Hurley JH; Mason DA; Matthews BW
    Biopolymers; 1992 Nov; 32(11):1443-6. PubMed ID: 1457725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tertiary peptide bond containing-oligo(Leu)s. Conformational studies in solution of oligo (L-leucine)s with L-proline residue and glycyl-N-(2, 4-dimethoxybenzyl)-L-leucine sequence.
    Narita M; Ishikawa K; Nakano H; Isokawa S
    Int J Pept Protein Res; 1984 Jul; 24(1):14-24. PubMed ID: 6480211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon-deuterium bonds as non-perturbative infrared probes of protein dynamics, electrostatics, heterogeneity, and folding.
    Zimmermann J; Romesberg FE
    Methods Mol Biol; 2014; 1084():101-19. PubMed ID: 24061918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proline N-oxides: modulators of the 3D conformation of linear peptides through "NO-turns".
    Farahani MD; Honarparvar B; Albericio F; Maguire GE; Govender T; Arvidsson PI; Kruger HG
    Org Biomol Chem; 2014 Jul; 12(25):4479-90. PubMed ID: 24849849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast helix formation in the B domain of protein A revealed by site-specific infrared probes.
    Davis CM; Cooper AK; Dyer RB
    Biochemistry; 2015 Mar; 54(9):1758-66. PubMed ID: 25706439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure and function of proline-rich regions in proteins.
    Williamson MP
    Biochem J; 1994 Jan; 297 ( Pt 2)(Pt 2):249-60. PubMed ID: 8297327
    [No Abstract]   [Full Text] [Related]  

  • 17. Influence of proline upon the folding and geometry of the WALP19 transmembrane peptide.
    Thomas R; Vostrikov VV; Greathouse DV; Koeppe RE
    Biochemistry; 2009 Dec; 48(50):11883-91. PubMed ID: 19891499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental characterization of electrostatic and conformational heterogeneity in an SH3 domain.
    Adhikary R; Zimmermann J; Liu J; Dawson PE; Romesberg FE
    J Phys Chem B; 2013 Oct; 117(42):13082-9. PubMed ID: 23834285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-Specific Dynamics of β-Sheet Peptides with (D) Pro-Gly Turns Probed by Laser-Excited Temperature-Jump Infrared Spectroscopy.
    Popp A; Scheerer D; Chi H; Keiderling TA; Hauser K
    Chemphyschem; 2016 May; 17(9):1273-80. PubMed ID: 26789931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beta VI turns in peptides and proteins: a model peptide mimicry.
    Müller G; Gurrath M; Kurz M; Kessler H
    Proteins; 1993 Mar; 15(3):235-51. PubMed ID: 8456095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.