These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 30462484)

  • 41. Bioinspired, graphene-enabled Ni composites with high strength and toughness.
    Zhang Y; Heim FM; Bartlett JL; Song N; Isheim D; Li X
    Sci Adv; 2019 May; 5(5):eaav5577. PubMed ID: 31172024
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biocompatible and Biodegradable 3D Graphene/Collagen Fiber Hybrids for High-Performance Conductive Networks and Sensors.
    Teng M; Luo X; Qin R; Feng J; Zhang P; Wang P; Zhang X; Wang X
    ACS Appl Mater Interfaces; 2024 Jul; 16(26):34213-34228. PubMed ID: 38885612
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhanced Mechanical Properties of Graphene (Reduced Graphene Oxide)/Aluminum Composites with a Bioinspired Nanolaminated Structure.
    Li Z; Guo Q; Li Z; Fan G; Xiong DB; Su Y; Zhang J; Zhang D
    Nano Lett; 2015 Dec; 15(12):8077-83. PubMed ID: 26574873
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Water-Based Continuous Fabrication of Highly Elastic Electromagnetic Fibers.
    Gao X; Su J; Xu C; Cao S; Gu S; Sun W; You Z
    ACS Nano; 2024 Jul; 18(27):17913-17923. PubMed ID: 38916583
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Graphene nanoribbons as an advanced precursor for making carbon fiber.
    Xiang C; Behabtu N; Liu Y; Chae HG; Young CC; Genorio B; Tsentalovich DE; Zhang C; Kosynkin DV; Lomeda JR; Hwang CC; Kumar S; Pasquali M; Tour JM
    ACS Nano; 2013 Feb; 7(2):1628-37. PubMed ID: 23339339
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bioinspired High-Strength Montmorillonite-Alginate Hybrid Film: The Effect of Different Divalent Metal Cation Crosslinking.
    Wang J; Song T; Chen H; Ming W; Cheng Z; Liu J; Liang B; Wang Y; Wang G
    Polymers (Basel); 2022 Jun; 14(12):. PubMed ID: 35746010
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ultrahigh Mechanical Strength and Robust Room-Temperature Self-Healing Properties of a Polyurethane-Graphene Oxide Network Resulting from Multiple Dynamic Bonds.
    Zhu X; Zhang W; Lu G; Zhao H; Wang L
    ACS Nano; 2022 Oct; 16(10):16724-16735. PubMed ID: 36215403
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ultrastrong Carbon Nanotubes/Graphene Papers via Multiple π-π Cross-Linking.
    Wang Y; Meng F; Huang F; Li Y; Tian X; Mei Y; Zhou Z
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47811-47819. PubMed ID: 32985859
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ultrasonic-electrodeposition of PtPd alloy nanoparticles on ionic liquid-functionalized graphene paper: towards a flexible and versatile nanohybrid electrode.
    Sun Y; Zheng H; Wang C; Yang M; Zhou A; Duan H
    Nanoscale; 2016 Jan; 8(3):1523-34. PubMed ID: 26681401
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High mechanical performance of layered graphene oxide/poly(vinyl alcohol) nanocomposite films.
    Liu L; Gao Y; Liu Q; Kuang J; Zhou D; Ju S; Han B; Zhang Z
    Small; 2013 Jul; 9(14):2466-72. PubMed ID: 23853125
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Bioinspired Interface Design for Improving the Strength and Electrical Conductivity of Graphene-Based Fibers.
    Ma T; Gao HL; Cong HP; Yao HB; Wu L; Yu ZY; Chen SM; Yu SH
    Adv Mater; 2018 Apr; 30(15):e1706435. PubMed ID: 29484728
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Conductive core-sheath calcium alginate/graphene composite fibers with polymeric ionic liquids as an intermediate.
    Fu X; Liang Y; Wu R; Shen J; Chen Z; Chen Y; Wang Y; Xia Y
    Carbohydr Polym; 2019 Feb; 206():328-335. PubMed ID: 30553329
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Integrating high electrical conductivity and photocatalytic activity in cotton fabric by cationizing for enriched coating of negatively charged graphene oxide.
    Sahito IA; Sun KC; Arbab AA; Qadir MB; Jeong SH
    Carbohydr Polym; 2015 Oct; 130():299-306. PubMed ID: 26076630
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management.
    Zhao G; Li J; Ren X; Chen C; Wang X
    Environ Sci Technol; 2011 Dec; 45(24):10454-62. PubMed ID: 22070750
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Graphene-Based Nanomaterials for Flexible and Wearable Supercapacitors.
    Huang L; Santiago D; Loyselle P; Dai L
    Small; 2018 Oct; 14(43):e1800879. PubMed ID: 30009468
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bioinspired Graphene Oxide/Polymer Nanocomposite Paper with High Strength, Toughness, and Dielectric Constant.
    Song S; Zhai Y; Zhang Y
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31264-31272. PubMed ID: 27782385
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In situ controlled growth of ZnIn2S4 nanosheets on reduced graphene oxide for enhanced photocatalytic hydrogen production performance.
    Zhou J; Tian G; Chen Y; Meng X; Shi Y; Cao X; Pan K; Fu H
    Chem Commun (Camb); 2013 Mar; 49(22):2237-9. PubMed ID: 23396572
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ultratough and ultrastrong graphene oxide hybrid films via a polycationitrile approach.
    Chang J; Zhang M; Zhao Q; Qu L; Yuan J
    Nanoscale Horiz; 2021 Apr; 6(4):341-347. PubMed ID: 33660723
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Interlocked graphene-Prussian blue hybrid composites enable multifunctional electrochemical applications.
    Zhang M; Hou C; Halder A; Ulstrup J; Chi Q
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):570-577. PubMed ID: 26916337
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dry spinning approach to continuous graphene fibers with high toughness.
    Tian Q; Xu Z; Liu Y; Fang B; Peng L; Xi J; Li Z; Gao C
    Nanoscale; 2017 Aug; 9(34):12335-12342. PubMed ID: 28825752
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.