BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 30462918)

  • 1. Molecular Tunnel Junction-Controlled High-Order Charge Transfer Plasmon and Fano Resonances.
    Cui X; Qin F; Lai Y; Wang H; Shao L; Chen H; Wang J; Lin HQ
    ACS Nano; 2018 Dec; 12(12):12541-12550. PubMed ID: 30462918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Switching plasmonic Fano resonance in gold nanosphere-nanoplate heterodimers.
    Lu W; Cui X; Chow TH; Shao L; Wang H; Chen H; Wang J
    Nanoscale; 2019 May; 11(19):9641-9653. PubMed ID: 31065663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strengthening Fano resonance on gold nanoplates with gold nanospheres.
    Cui X; Lai Y; Qin F; Shao L; Wang J; Lin HQ
    Nanoscale; 2020 Jan; 12(3):1975-1984. PubMed ID: 31912072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Fano resonance with strong polarization dependence in gold nanoplate-nanosphere heterodimers.
    Qin F; Lai Y; Yang J; Cui X; Ma H; Wang J; Lin HQ
    Nanoscale; 2017 Sep; 9(35):13222-13234. PubMed ID: 28853475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colloidal Gold Nanorings and Their Plasmon Coupling with Gold Nanospheres.
    Chow TH; Lai Y; Cui X; Lu W; Zhuo X; Wang J
    Small; 2019 Aug; 15(35):e1902608. PubMed ID: 31304668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum plasmon resonances controlled by molecular tunnel junctions.
    Tan SF; Wu L; Yang JK; Bai P; Bosman M; Nijhuis CA
    Science; 2014 Mar; 343(6178):1496-9. PubMed ID: 24675958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes.
    Lee JH; You MH; Kim GH; Nam JM
    Nano Lett; 2014 Nov; 14(11):6217-25. PubMed ID: 25275930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polarization-Independent Multiple Fano Resonances in Plasmonic Nonamers for Multimode-Matching Enhanced Multiband Second-Harmonic Generation.
    Liu SD; Leong ES; Li GC; Hou Y; Deng J; Teng JH; Ong HC; Lei DY
    ACS Nano; 2016 Jan; 10(1):1442-53. PubMed ID: 26727133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of shape in substrate-induced plasmonic shift and mode uncovering on gold nanocrystals.
    Qin F; Cui X; Ruan Q; Lai Y; Wang J; Ma H; Lin HQ
    Nanoscale; 2016 Oct; 8(40):17645-17657. PubMed ID: 27714128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tip-Enhanced Raman Excitation Spectroscopy (TERES): Direct Spectral Characterization of the Gap-Mode Plasmon.
    Yang M; Mattei MS; Cherqui CR; Chen X; Van Duyne RP; Schatz GC
    Nano Lett; 2019 Oct; 19(10):7309-7316. PubMed ID: 31518135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning Overbias Plasmon Energy and Intensity in Molecular Plasmonic Tunneling Junctions by Atomic Polarizability.
    Du W; Chen X; Wang T; Lin Q; Nijhuis CA
    J Am Chem Soc; 2024 Jun; ():. PubMed ID: 38940772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double Fano resonances in hybrid disk/rod artificial plasmonic molecules based on dipole-quadrupole coupling.
    Chen Z; Zhang S; Chen Y; Liu Y; Li P; Wang Z; Zhu X; Bi K; Duan H
    Nanoscale; 2020 May; 12(17):9776-9785. PubMed ID: 32324182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observation of quantum tunneling between two plasmonic nanoparticles.
    Scholl JA; García-Etxarri A; Koh AL; Dionne JA
    Nano Lett; 2013 Feb; 13(2):564-9. PubMed ID: 23245286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gap plasmon modes and plasmon-exciton coupling in a hybrid Au/MoSe
    Alves E; Péchou R; Coratger R; Mlayah A
    Opt Express; 2023 Apr; 31(8):12549-12561. PubMed ID: 37157412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmon-Assisted Resonant Electron Tunneling in a Scanning Tunneling Microscope Junction.
    Liu S; Wolf M; Kumagai T
    Phys Rev Lett; 2018 Nov; 121(22):226802. PubMed ID: 30547648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An asymmetric aluminum active quantum plasmonic device.
    Mokkath JH; Henzie J
    Phys Chem Chem Phys; 2020 Jan; 22(3):1416-1421. PubMed ID: 31859295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elevating Surface-Enhanced Infrared Absorption with Quantum Mechanical Effects of Plasmonic Nanocavities.
    Huang G; Liu K; Shi G; Guo Q; Li X; Liu Z; Ma W; Wang T
    Nano Lett; 2022 Aug; 22(15):6083-6090. PubMed ID: 35866846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly enhanced transverse plasmon resonance and tunable double Fano resonances in gold@titania nanorods.
    Ruan Q; Fang C; Jiang R; Jia H; Lai Y; Wang J; Lin HQ
    Nanoscale; 2016 Mar; 8(12):6514-26. PubMed ID: 26935180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron Transport Across Plasmonic Molecular Nanogaps Interrogated with Surface-Enhanced Raman Scattering.
    Lin L; Zhang Q; Li X; Qiu M; Jiang X; Jin W; Gu H; Lei DY; Ye J
    ACS Nano; 2018 Jul; 12(7):6492-6503. PubMed ID: 29924592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the in-Plane Near-Field Enhancement Limit in a Plasmonic Particle-on-Film Nanocavity with Surface-Enhanced Raman Spectroscopy of Graphene.
    Liu D; Wu T; Zhang Q; Wang X; Guo X; Su Y; Zhu Y; Shao M; Chen H; Luo Y; Lei D
    ACS Nano; 2019 Jul; 13(7):7644-7654. PubMed ID: 31244032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.