These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 30463027)

  • 1. A neural network approach to analyze cross-sections of muscle fibers in pathological images.
    Li Y; Yang Z; Wang Y; Cao X; Xu X
    Comput Biol Med; 2019 Jan; 104():97-104. PubMed ID: 30463027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated high-content morphological analysis of muscle fiber histology.
    Miazaki M; Viana MP; Yang Z; Comin CH; Wang Y; da F Costa L; Xu X
    Comput Biol Med; 2015 Aug; 63():28-35. PubMed ID: 26004825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computational approach to detect and segment cytoplasm in muscle fiber images.
    Guo Y; Xu X; Wang Y; Yang Z; Wang Y; Xia S
    Microsc Res Tech; 2015 Jun; 78(6):508-18. PubMed ID: 25900156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An image processing pipeline to detect and segment nuclei in muscle fiber microscopic images.
    Guo Y; Xu X; Wang Y; Wang Y; Xia S; Yang Z
    Microsc Res Tech; 2014 Aug; 77(8):547-59. PubMed ID: 24777764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.
    Tong N; Gou S; Yang S; Ruan D; Sheng K
    Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MF-Net: Automated Muscle Fiber Segmentation From Immunofluorescence Images Using a Local-Global Feature Fusion Network.
    Du G; Zhang P; Guo J; Pang X; Kan G; Zeng B; Chen X; Liang J; Zhan Y
    J Digit Imaging; 2023 Dec; 36(6):2411-2426. PubMed ID: 37714969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated image analysis of skeletal muscle fiber cross-sectional area.
    Mula J; Lee JD; Liu F; Yang L; Peterson CA
    J Appl Physiol (1985); 2013 Jan; 114(1):148-55. PubMed ID: 23139362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic gas detection in prostate cancer patients during image-guided radiation therapy using a deep convolutional neural network.
    Miura H; Ozawa S; Doi Y; Nakao M; Ohnishi K; Kenjo M; Nagata Y
    Phys Med; 2019 Aug; 64():24-28. PubMed ID: 31515026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microscopic nuclei classification, segmentation, and detection with improved deep convolutional neural networks (DCNN).
    Alom Z; Asari VK; Parwani A; Taha TM
    Diagn Pathol; 2022 Apr; 17(1):38. PubMed ID: 35436941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep convolutional neural network for segmentation of thoracic organs-at-risk using cropped 3D images.
    Feng X; Qing K; Tustison NJ; Meyer CH; Chen Q
    Med Phys; 2019 May; 46(5):2169-2180. PubMed ID: 30830685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning segmentation of transverse musculoskeletal ultrasound images for neuromuscular disease assessment.
    Marzola F; van Alfen N; Doorduin J; Meiburger KM
    Comput Biol Med; 2021 Aug; 135():104623. PubMed ID: 34252683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pancreas Segmentation in Abdominal CT Scans using Inter-/Intra-Slice Contextual Information with a Cascade Neural Network.
    Yang Z; Zhang L; Zhang M; Feng J; Wu Z; Ren F; Lv Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5937-5940. PubMed ID: 31947200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An automatic method for lung segmentation and reconstruction in chest X-ray using deep neural networks.
    Souza JC; Bandeira Diniz JO; Ferreira JL; França da Silva GL; Corrêa Silva A; de Paiva AC
    Comput Methods Programs Biomed; 2019 Aug; 177():285-296. PubMed ID: 31319957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altered nuclear dynamics in MDX myofibers.
    Iyer SR; Shah SB; Valencia AP; Schneider MF; Hernández-Ochoa EO; Stains JP; Blemker SS; Lovering RM
    J Appl Physiol (1985); 2017 Mar; 122(3):470-481. PubMed ID: 27979987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MR-based synthetic CT generation using a deep convolutional neural network method.
    Han X
    Med Phys; 2017 Apr; 44(4):1408-1419. PubMed ID: 28192624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A semiautomated measurement of muscle fiber size using the Imaris software.
    Gilda JE; Ko JH; Elfassy AY; Tropp N; Parnis A; Ayalon B; Jhe W; Cohen S
    Am J Physiol Cell Physiol; 2021 Sep; 321(3):C615-C631. PubMed ID: 34319828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Efficient Implementation of Deep Convolutional Neural Networks for MRI Segmentation.
    Hoseini F; Shahbahrami A; Bayat P
    J Digit Imaging; 2018 Oct; 31(5):738-747. PubMed ID: 29488179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated muscle histopathology analysis using CellProfiler.
    Lau YS; Xu L; Gao Y; Han R
    Skelet Muscle; 2018 Oct; 8(1):32. PubMed ID: 30336774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of intensity normalization for optimal segmentation performance of a fully convolutional neural network.
    Jacobsen N; Deistung A; Timmann D; Goericke SL; Reichenbach JR; Güllmar D
    Z Med Phys; 2019 May; 29(2):128-138. PubMed ID: 30579766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully automated segmentation and morphometrical analysis of muscle fiber images.
    Kim YJ; Brox T; Feiden W; Weickert J
    Cytometry A; 2007 Jan; 71(1):8-15. PubMed ID: 17211880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.