These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 30463120)

  • 1. Variability of subsurface structure and infiltration hydrology among surface coal mine valley fills.
    Hester ET; Little KL; Buckwalter JD; Zipper CE; Burbey TJ
    Sci Total Environ; 2019 Feb; 651(Pt 2):2648-2661. PubMed ID: 30463120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting total dissolved solids release from central Appalachian coal mine spoils.
    Daniels WL; Zipper CE; Orndorff ZW; Skousen J; Barton CD; McDonald LM; Beck MA
    Environ Pollut; 2016 Sep; 216():371-379. PubMed ID: 27323343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The geochemistry and hydrology of coal waste rock dumps: A systematic global review.
    Welch C; Barbour SL; Hendry MJ
    Sci Total Environ; 2021 Nov; 795():148798. PubMed ID: 34247080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geological exploration of coal mine burnt rock and waterlogged area boundary based on transient electromagnetic and high-density electrical resistivity.
    Yang Y; Zhao C; Di Y; Li Q
    Sci Rep; 2024 Mar; 14(1):5105. PubMed ID: 38429304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of mountaintop mines and valley fills on the physicochemical quality of stream ecosystems in the central Appalachians: a review.
    Griffith MB; Norton SB; Alexander LC; Pollard AI; LeDuc SD
    Sci Total Environ; 2012 Feb; 417-418():1-12. PubMed ID: 22264919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preferential flow characteristics of reclaimed mine soils in a surface coal mine dump.
    Gang L; Jun L; Yexin L; Ting W; Yazhuo L; Xinyang F
    Environ Monit Assess; 2017 Jun; 189(6):266. PubMed ID: 28497296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging Hydrological Processes in Headwater Riparian Seeps with Time-Lapse Electrical Resistivity.
    Williams MR; Buda AR; Singha K; Folmar GJ; Elliott HA; Schmidt JP
    Ground Water; 2017 Jan; 55(1):136-148. PubMed ID: 27618484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterisation of sulphide-bearing waste-rock dumps using electrical resistivity imaging: the case study of the Rio Marina mining district (Elba Island, Italy).
    Mele M; Servida D; Lupis D
    Environ Monit Assess; 2013 Jul; 185(7):5891-907. PubMed ID: 23179723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical resistivity imaging for detection of hydrogeological active zones in karst areas to identify the site of mining waste disposal.
    Ali MAH; Sun S; Qian W; Abdou Dodo B
    Environ Sci Pollut Res Int; 2020 Jun; 27(18):22486-22498. PubMed ID: 32319050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Impact: Effects of Mountaintop Mining on Surface Topography, Bedrock Structure, and Downstream Waters.
    Ross MR; McGlynn BL; Bernhardt ES
    Environ Sci Technol; 2016 Feb; 50(4):2064-74. PubMed ID: 26800154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimates of water and solute release from a coal waste rock dump in the Elk Valley, British Columbia, Canada.
    Villeneuve SA; Barbour SL; Hendry MJ; Carey SK
    Sci Total Environ; 2017 Dec; 601-602():543-555. PubMed ID: 28575832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Soil-epikarst structures and their hydrological characteristics on dolomite slopes in karst region of southwest China].
    Zhang J; Fu ZY; Chen HS; Lian JJ; Qin C
    Ying Yong Sheng Tai Xue Bao; 2021 Jun; 32(6):2107-2118. PubMed ID: 34212617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of material variability and compacted layers on transfer processes in heterogeneous waste rock piles.
    Lahmira B; Lefebvre R; Aubertin M; Bussière B
    J Contam Hydrol; 2017 Sep; 204():66-78. PubMed ID: 28821353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-invasive flow path characterization in a mining-impacted wetland.
    Bethune J; Randell J; Runkel RL; Singha K
    J Contam Hydrol; 2015 Dec; 183():29-39. PubMed ID: 26529300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging hydrological dynamics in karst unsaturated zones by time-lapse electrical resistivity tomography.
    Zhang J; Sirieix C; Genty D; Salmon F; Verdet C; Mateo S; Xu S; Bujan S; Devaux L; Larcanché M
    Sci Total Environ; 2024 Jan; 907():168037. PubMed ID: 37879471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determining the influencing factors of preferential flow in ground fissures for coal mine dump eco-engineering.
    Li Y; Lv G; Shao H; Dai Q; Du X; Liang D; Kuang S; Wang D
    PeerJ; 2021; 9():e10547. PubMed ID: 33505792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the fate of explosives derived nitrate in mine waste rock dumps using the stable isotopes of oxygen and nitrogen.
    Hendry MJ; Wassenaar LI; Barbour SL; Schabert MS; Birkham TK; Fedec T; Schmeling EE
    Sci Total Environ; 2018 Nov; 640-641():127-137. PubMed ID: 29859430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of heterogeneity and anisotropy related to the construction method on transfer processes in waste rock piles.
    Lahmira B; Lefebvre R; Aubertin M; Bussière B
    J Contam Hydrol; 2016 Jan; 184():35-49. PubMed ID: 26745287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regional scale selenium loading associated with surface coal mining, Elk Valley, British Columbia, Canada.
    Wellen CC; Shatilla NJ; Carey SK
    Sci Total Environ; 2015 Nov; 532():791-802. PubMed ID: 26136156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling Patterns of Total Dissolved Solids Release from Central Appalachia, USA, Mine Spoils.
    Clark EV; Zipper CE; Daniels WL; Orndorff ZW; Keefe MJ
    J Environ Qual; 2017 Jan; 46(1):55-63. PubMed ID: 28177419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.