BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 30463138)

  • 1. Preparation of laccase-loaded magnetic nanoflowers and their recycling for efficient degradation of bisphenol A.
    Fu M; Xing J; Ge Z
    Sci Total Environ; 2019 Feb; 651(Pt 2):2857-2865. PubMed ID: 30463138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic nanoparticles encapsulated laccase nanoflowers: evaluation of enzymatic activity and reusability for degradation of malachite green.
    Sun T; Fu M; Xing J; Ge Z
    Water Sci Technol; 2020 Jan; 81(1):29-39. PubMed ID: 32293586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible immobilization of laccase onto metal-ion-chelated magnetic microspheres for bisphenol A removal.
    Lin J; Liu Y; Chen S; Le X; Zhou X; Zhao Z; Ou Y; Yang J
    Int J Biol Macromol; 2016 Mar; 84():189-99. PubMed ID: 26691384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A highly reusable MANAE-agarose-immobilized Pleurotus ostreatus laccase for degradation of bisphenol A.
    Brugnari T; Pereira MG; Bubna GA; de Freitas EN; Contato AG; Corrêa RCG; Castoldi R; de Souza CGM; Polizeli MLTM; Bracht A; Peralta RM
    Sci Total Environ; 2018 Sep; 634():1346-1351. PubMed ID: 29710634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on transformation and degradation of bisphenol A by Trametes versicolor laccase and simulation of molecular docking.
    Hongyan L; Zexiong Z; Shiwei X; He X; Yinian Z; Haiyun L; Zhongsheng Y
    Chemosphere; 2019 Jun; 224():743-750. PubMed ID: 30851526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Succinic anhydride-based chemical modification making laccase@Cu
    Yang H; He P; Yin Y; Mao Z; Zhang J; Zhong C; Xie T; Wang A
    Bioprocess Biosyst Eng; 2021 Oct; 44(10):2061-2073. PubMed ID: 33983484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Bi₁₂O₁₅Cl₆ Photocatalyst for the Degradation of Bisphenol A under Visible-Light Irradiation.
    Wang CY; Zhang X; Song XN; Wang WK; Yu HQ
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5320-6. PubMed ID: 26848924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photocatalytic degradation of endocrine disruptor Bisphenol-A in the presence of prepared CexZn1-xO nanocomposites under irradiation of sunlight.
    Kamaraj M; Ranjith KS; Sivaraj R; Kumar RT; Abdul Salam H
    J Environ Sci (China); 2014 Nov; 26(11):2362-8. PubMed ID: 25458693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of free and immobilized laccase from Cyberlindnera fabianii and application in degradation of bisphenol A.
    Olajuyigbe FM; Adetuyi OY; Fatokun CO
    Int J Biol Macromol; 2019 Mar; 125():856-864. PubMed ID: 30557644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photocatalysis of bisphenol A by an easy-settling titania/titanate composite: Effects of water chemistry factors, degradation pathway and theoretical calculation.
    Zhao X; Du P; Cai Z; Wang T; Fu J; Liu W
    Environ Pollut; 2018 Jan; 232():580-590. PubMed ID: 28988872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclodextrin-functionalized Fe3O4@TiO2: reusable, magnetic nanoparticles for photocatalytic degradation of endocrine-disrupting chemicals in water supplies.
    Chalasani R; Vasudevan S
    ACS Nano; 2013 May; 7(5):4093-104. PubMed ID: 23600646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitigation of bisphenol A using an array of laccase-based robust bio-catalytic cues - A review.
    Bilal M; Iqbal HMN; Barceló D
    Sci Total Environ; 2019 Nov; 689():160-177. PubMed ID: 31271985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High efficiency biotransformation of bisphenol A in a fluidized bed reactor using stabilized laccase in porous silica.
    Piao M; Zou D; Ren X; Gao S; Qin C; Piao Y
    Enzyme Microb Technol; 2019 Jul; 126():1-8. PubMed ID: 31000159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid membrane with TiO2 based bio-catalytic nanoparticle suspension system for the degradation of bisphenol-A.
    Hou J; Dong G; Luu B; Sengpiel RG; Ye Y; Wessling M; Chen V
    Bioresour Technol; 2014 Oct; 169():475-483. PubMed ID: 25084046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous production of laccase and degradation of bisphenol A with Trametes versicolor cultivated on agricultural wastes.
    Zeng S; Zhao J; Xia L
    Bioprocess Biosyst Eng; 2017 Aug; 40(8):1237-1245. PubMed ID: 28536853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of bisphenol A and its derivatives from aqueous medium through laccase-catalyzed treatment enhanced by addition of polyethylene glycol.
    Kimura Y; Takahashi A; Kashiwada A; Yamada K
    Environ Technol; 2016; 37(14):1733-44. PubMed ID: 26652753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation and mineralization of Bisphenol A (BPA) in aqueous solution using advanced oxidation processes: UV/H2O2 and UV/S2O8(2-) oxidation systems.
    Sharma J; Mishra IM; Kumar V
    J Environ Manage; 2015 Jun; 156():266-75. PubMed ID: 25889275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In silico molecular interaction of bisphenol analogues with human nuclear receptors reveals their stronger affinity vs. classical bisphenol A.
    Sharma S; Ahmad S; Khan MF; Parvez S; Raisuddin S
    Toxicol Mech Methods; 2018 Nov; 28(9):660-669. PubMed ID: 29925285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel biodegradation system for bisphenol A using laccase-immobilized hollow fiber membranes.
    Mokhtar A; Nishioka T; Matsumoto H; Kitada S; Ryuno N; Okobira T
    Int J Biol Macromol; 2019 Jun; 130():737-744. PubMed ID: 30836183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bisphenol A and replacements in thermal paper: A review.
    Björnsdotter MK; de Boer J; Ballesteros-Gómez A
    Chemosphere; 2017 Sep; 182():691-706. PubMed ID: 28528315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.