These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 3046343)

  • 1. Tubular hypermetabolism as a factor in the progression of chronic renal failure.
    Schrier RW; Harris DC; Chan L; Shapiro JI; Caramelo C
    Am J Kidney Dis; 1988 Sep; 12(3):243-9. PubMed ID: 3046343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction of remnant nephron hypermetabolism by protein restriction.
    Jarusiripipat C; Shapiro JI; Chan L; Schrier RW
    Am J Kidney Dis; 1991 Sep; 18(3):367-74. PubMed ID: 1882829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive changes in GFR, tubular morphology, and transport in subtotal nephrectomized kidneys: modeling and analysis.
    Layton AT; Edwards A; Vallon V
    Am J Physiol Renal Physiol; 2017 Aug; 313(2):F199-F209. PubMed ID: 28331059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased nephron oxygen consumption: potential role in progression of chronic renal disease.
    Schrier RW; Shapiro JI; Chan L; Harris DC
    Am J Kidney Dis; 1994 Feb; 23(2):176-82. PubMed ID: 8311071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Na-K-ATPase along rat nephron after subtotal nephrectomy: effect of enalapril.
    Terzi F; Cheval L; Barlet-Bas C; Younes-Ibrahim M; Buffin-Meyer B; Burtin M; Beaufils H; Marsy S; Girolami JP; Kleinknecht C; Doucet A
    Am J Physiol; 1996 Jun; 270(6 Pt 2):F997-1003. PubMed ID: 8764319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen consumption and oxidant stress in surviving nephrons.
    Nath KA; Croatt AJ; Hostetter TH
    Am J Physiol; 1990 May; 258(5 Pt 2):F1354-62. PubMed ID: 2337154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Could cytoplasmic concentration gradients for sodium and ATP exist in intact renal cells?
    Ammann H; Noël J; Tejedor A; Boulanger Y; Gougoux A; Vinay P
    Can J Physiol Pharmacol; 1995 Apr; 73(4):421-35. PubMed ID: 7671185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of TLR4 protein is reduced in chronic renal failure: evidence from an experimental model of nephron reduction.
    Kacsó IM; Borza GM; Ciuce CC; Bîrsan A; Apostu RC; Dindelegan GC; Bondor CI; Potra AR; Netea MG; Cătoi C
    Rom J Morphol Embryol; 2015; 56(1):93-9. PubMed ID: 25826492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remnant kidney oxygen consumption: hypermetabolism or hyperbole?
    Culpepper RM; Schoolwerth AC
    J Am Soc Nephrol; 1992 Aug; 3(2):151-6. PubMed ID: 1382653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between intracellular ATP and the sodium pump activity in dog renal tubules.
    Ammann H; Noël J; Boulanger Y; Vinay P
    Can J Physiol Pharmacol; 1990 Jan; 68(1):57-67. PubMed ID: 2158385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A micropuncture study of renal phosphate transport in rats with chronic renal failure and secondary hyperparathyroidism.
    Bank N; Su WS; Aynedjian HS
    J Clin Invest; 1978 Apr; 61(4):884-94. PubMed ID: 659581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypertrophy of basolateral Na-K pump activity in the proximal tubule of the remnant kidney.
    Salehmoghaddam S; Bradley T; Mikhail N; Badie-Dezfooly B; Nord EP; Trizna W; Kheyfets R; Fine LG
    Lab Invest; 1985 Oct; 53(4):443-52. PubMed ID: 2413277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of change in the excretion of sodium per nephron when renal mass is reduced.
    Hayslett JP; Kashgarian M; Epstein FH
    J Clin Invest; 1969 Jun; 48(6):1002-6. PubMed ID: 5771184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Na/H antiporter mRNA expression in single nephron segments of rat kidney cortex.
    Krapf R; Solioz M
    J Clin Invest; 1991 Sep; 88(3):783-8. PubMed ID: 1653275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathways to nephron loss starting from glomerular diseases-insights from animal models.
    Kriz W; LeHir M
    Kidney Int; 2005 Feb; 67(2):404-19. PubMed ID: 15673288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulation of tubular secretion of creatinine in health and in conditions associated with reduced nephron mass. Evidence for a tubular functional reserve.
    Herrera J; Rodríguez-Iturbe B
    Nephrol Dial Transplant; 1998 Mar; 13(3):623-9. PubMed ID: 9550637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypoxia-inducible factor-1α activation improves renal oxygenation and mitochondrial function in early chronic kidney disease.
    Thomas JL; Pham H; Li Y; Hall E; Perkins GA; Ali SS; Patel HH; Singh P
    Am J Physiol Renal Physiol; 2017 Aug; 313(2):F282-F290. PubMed ID: 28331062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Urinary concentration defect and limited expression of sodium cotransporter, rBSC1, in a rat model of chronic renal failure.
    Michimata M; Kazama I; Mizukami K; Araki T; Nakamura Y; Suzuki M; Wang W; Fujimori K; Satomi S; Ito S; Imai Y; Matsubara M
    Nephron Physiol; 2003; 93(2):p34-41. PubMed ID: 12629269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Normal and pathological renal aging in animals].
    Corman B
    Presse Med; 1992 Jul; 21(26):1238-45. PubMed ID: 1409479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional adaptation to reduction in renal mass.
    Hayslett JP
    Physiol Rev; 1979 Jan; 59(1):137-64. PubMed ID: 220646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.