These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 30463553)

  • 1. Large-scale prediction of protein ubiquitination sites using a multimodal deep architecture.
    He F; Wang R; Li J; Bao L; Xu D; Zhao X
    BMC Syst Biol; 2018 Nov; 12(Suppl 6):109. PubMed ID: 30463553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DeepUbi: a deep learning framework for prediction of ubiquitination sites in proteins.
    Fu H; Yang Y; Wang X; Wang H; Xu Y
    BMC Bioinformatics; 2019 Feb; 20(1):86. PubMed ID: 30777029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of lysine ubiquitination with mRMR feature selection and analysis.
    Cai Y; Huang T; Hu L; Shi X; Xie L; Li Y
    Amino Acids; 2012 Apr; 42(4):1387-95. PubMed ID: 21267749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeepTL-Ubi: A novel deep transfer learning method for effectively predicting ubiquitination sites of multiple species.
    Liu Y; Li A; Zhao XM; Wang M
    Methods; 2021 Aug; 192():103-111. PubMed ID: 32791338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Ensemble Deep Learning based Predictor for Simultaneously Identifying Protein Ubiquitylation and SUMOylation Sites.
    He F; Li J; Wang R; Zhao X; Han Y
    BMC Bioinformatics; 2021 Oct; 22(1):519. PubMed ID: 34689734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization and identification of ubiquitin conjugation sites with E3 ligase recognition specificities.
    Nguyen VN; Huang KY; Huang CH; Chang TH; BretaƱa N; Lai K; Weng J; Lee TY
    BMC Bioinformatics; 2015; 16 Suppl 1(Suppl 1):S1. PubMed ID: 25707307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-dimensional feature recognition model based on capsule network for ubiquitination site prediction.
    Li W; Wang J; Luo Y; Bezabih TT
    PeerJ; 2022; 10():e14427. PubMed ID: 36523471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SiRNA silencing efficacy prediction based on a deep architecture.
    Han Y; He F; Chen Y; Liu Y; Yu H
    BMC Genomics; 2018 Sep; 19(Suppl 7):669. PubMed ID: 30255786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning-based approaches for ubiquitination site prediction in human proteins.
    Pourmirzaei M; Ramazi S; Esmaili F; Shojaeilangari S; Allahvardi A
    BMC Bioinformatics; 2023 Nov; 24(1):449. PubMed ID: 38017391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational methods for ubiquitination site prediction using physicochemical properties of protein sequences.
    Cai B; Jiang X
    BMC Bioinformatics; 2016 Mar; 17():116. PubMed ID: 26940649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational identification of human ubiquitination sites using convolutional and recurrent neural networks.
    Wang X; Yan R; Wang Y
    Mol Omics; 2021 Dec; 17(6):948-955. PubMed ID: 34515266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale comparative assessment of computational predictors for lysine post-translational modification sites.
    Chen Z; Liu X; Li F; Li C; Marquez-Lago T; Leier A; Akutsu T; Webb GI; Xu D; Smith AI; Li L; Chou KC; Song J
    Brief Bioinform; 2019 Nov; 20(6):2267-2290. PubMed ID: 30285084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UbiSite: incorporating two-layered machine learning method with substrate motifs to predict ubiquitin-conjugation site on lysines.
    Huang CH; Su MG; Kao HJ; Jhong JH; Weng SL; Lee TY
    BMC Syst Biol; 2016 Jan; 10 Suppl 1(Suppl 1):6. PubMed ID: 26818456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using WPNNA classifier in ubiquitination site prediction based on hybrid features.
    Feng KY; Huang T; Feng KR; Liu XJ
    Protein Pept Lett; 2013 Mar; 20(3):318-23. PubMed ID: 22591471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A method to distinguish between lysine acetylation and lysine ubiquitination with feature selection and analysis.
    Zhou Y; Zhang N; Li BQ; Huang T; Cai YD; Kong XY
    J Biomol Struct Dyn; 2015; 33(11):2479-90. PubMed ID: 25616595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UPFPSR: a ubiquitylation predictor for plant through combining sequence information and random forest.
    Yin S; Zheng J; Jia C; Zou Q; Lin Z; Shi H
    Math Biosci Eng; 2022 Jan; 19(1):775-791. PubMed ID: 34903012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DeepSSPred: A Deep Learning Based Sulfenylation Site Predictor Via a Novel nSegmented Optimize Federated Feature Encoder.
    Khan ZU; Pi D
    Protein Pept Lett; 2021; 28(6):708-721. PubMed ID: 33267753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DeepPPSite: A deep learning-based model for analysis and prediction of phosphorylation sites using efficient sequence information.
    Ahmed S; Kabir M; Arif M; Khan ZU; Yu DJ
    Anal Biochem; 2021 Jan; 612():113955. PubMed ID: 32949607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporating key position and amino acid residue features to identify general and species-specific Ubiquitin conjugation sites.
    Chen X; Qiu JD; Shi SP; Suo SB; Huang SY; Liang RP
    Bioinformatics; 2013 Jul; 29(13):1614-22. PubMed ID: 23626001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational prediction of protein ubiquitination sites mapping on Arabidopsis thaliana.
    Mosharaf MP; Hassan MM; Ahmed FF; Khatun MS; Moni MA; Mollah MNH
    Comput Biol Chem; 2020 Apr; 85():107238. PubMed ID: 32114285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.