These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 30463553)

  • 21. PseAraUbi: predicting arabidopsis ubiquitination sites by incorporating the physico-chemical and structural features.
    Wang W; Zhang Y; Liu D; Zhang H; Wang X; Zhou Y
    Plant Mol Biol; 2022 Sep; 110(1-2):81-92. PubMed ID: 35773617
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting protein-ligand binding residues with deep convolutional neural networks.
    Cui Y; Dong Q; Hong D; Wang X
    BMC Bioinformatics; 2019 Feb; 20(1):93. PubMed ID: 30808287
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.
    Pan X; Shen HB
    BMC Bioinformatics; 2017 Feb; 18(1):136. PubMed ID: 28245811
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A deep learning method to more accurately recall known lysine acetylation sites.
    Wu M; Yang Y; Wang H; Xu Y
    BMC Bioinformatics; 2019 Jan; 20(1):49. PubMed ID: 30674277
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DP-site: A dual deep learning-based method for protein-peptide interaction site prediction.
    Shafiee S; Fathi A; Taherzadeh G
    Methods; 2024 Sep; 229():17-29. PubMed ID: 38871095
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Towards Computational Models of Identifying Protein Ubiquitination Sites.
    Wang L; Zhang R
    Curr Drug Targets; 2019; 20(5):565-578. PubMed ID: 30246637
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis and review of techniques and tools based on machine learning and deep learning for prediction of lysine malonylation sites in protein sequences.
    Ramazi S; Tabatabaei SAH; Khalili E; Nia AG; Motarjem K
    Database (Oxford); 2024 Jan; 2024():. PubMed ID: 38245002
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Towards more accurate prediction of ubiquitination sites: a comprehensive review of current methods, tools and features.
    Chen Z; Zhou Y; Zhang Z; Song J
    Brief Bioinform; 2015 Jul; 16(4):640-57. PubMed ID: 25212598
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ESA-UbiSite: accurate prediction of human ubiquitination sites by identifying a set of effective negatives.
    Wang JR; Huang WL; Tsai MJ; Hsu KT; Huang HL; Ho SY
    Bioinformatics; 2017 Mar; 33(5):661-668. PubMed ID: 28062441
    [TBL] [Abstract][Full Text] [Related]  

  • 30. iRNA-PseKNC(2methyl): Identify RNA 2'-O-methylation sites by convolution neural network and Chou's pseudo components.
    Tahir M; Tayara H; Chong KT
    J Theor Biol; 2019 Mar; 465():1-6. PubMed ID: 30590059
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adapt-Kcr: a novel deep learning framework for accurate prediction of lysine crotonylation sites based on learning embedding features and attention architecture.
    Li Z; Fang J; Wang S; Zhang L; Chen Y; Pian C
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35189635
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep neural networks for inferring binding sites of RNA-binding proteins by using distributed representations of RNA primary sequence and secondary structure.
    Deng L; Liu Y; Shi Y; Zhang W; Yang C; Liu H
    BMC Genomics; 2020 Dec; 21(Suppl 13):866. PubMed ID: 33334313
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PTM-ssMP: A Web Server for Predicting Different Types of Post-translational Modification Sites Using Novel Site-specific Modification Profile.
    Liu Y; Wang M; Xi J; Luo F; Li A
    Int J Biol Sci; 2018; 14(8):946-956. PubMed ID: 29989096
    [TBL] [Abstract][Full Text] [Related]  

  • 34. GPS-Uber: a hybrid-learning framework for prediction of general and E3-specific lysine ubiquitination sites.
    Wang C; Tan X; Tang D; Gou Y; Han C; Ning W; Lin S; Zhang W; Chen M; Peng D; Xue Y
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35037020
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PhosIDN: an integrated deep neural network for improving protein phosphorylation site prediction by combining sequence and protein-protein interaction information.
    Yang H; Wang M; Liu X; Zhao XM; Li A
    Bioinformatics; 2021 Dec; 37(24):4668-4676. PubMed ID: 34320631
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting protein phosphorylation sites in soybean using interpretable deep tabular learning network.
    Khalili E; Ramazi S; Ghanati F; Kouchaki S
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35152280
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational identification of ubiquitination sites in Arabidopsis thaliana using convolutional neural networks.
    Wang X; Yan R; Chen YZ; Wang Y
    Plant Mol Biol; 2021 Apr; 105(6):601-610. PubMed ID: 33527202
    [TBL] [Abstract][Full Text] [Related]  

  • 38. UbiComb: A Hybrid Deep Learning Model for Predicting Plant-Specific Protein Ubiquitylation Sites.
    Siraj A; Lim DY; Tayara H; Chong KT
    Genes (Basel); 2021 May; 12(5):. PubMed ID: 34064731
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Caps-Ubi Model for Protein Ubiquitination Site Prediction.
    Luo Y; Jiang J; Zhu J; Huang Q; Li W; Wang Y; Gao Y
    Front Plant Sci; 2022; 13():884903. PubMed ID: 35693166
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accurate in silico identification of protein succinylation sites using an iterative semi-supervised learning technique.
    Zhao X; Ning Q; Chai H; Ma Z
    J Theor Biol; 2015 Jun; 374():60-5. PubMed ID: 25843215
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.