BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

655 related articles for article (PubMed ID: 30463924)

  • 1. Genetic Analysis of
    Min K; Biermann A; Hogan DA; Konopka JB
    mSphere; 2018 Nov; 3(6):. PubMed ID: 30463924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Candida tropicalis RON1 is required for hyphal formation, biofilm development, and virulence but is dispensable for N-acetylglucosamine catabolism.
    Song YD; Hsu CC; Lew SQ; Lin CH
    Med Mycol; 2021 Apr; 59(4):379-391. PubMed ID: 32712662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of Hyphal Growth and N-Acetylglucosamine Catabolism by Two Transcription Factors in
    Naseem S; Min K; Spitzer D; Gardin J; Konopka JB
    Genetics; 2017 May; 206(1):299-314. PubMed ID: 28348062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N-acetylglucosamine-mediated morphological transition in Candida albicans and Candida tropicalis.
    Lew SQ; Lin CH
    Curr Genet; 2021 Apr; 67(2):249-254. PubMed ID: 33388851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The N-acetylglucosamine catabolic gene cluster in Trichoderma reesei is controlled by the Ndt80-like transcription factor RON1.
    Kappel L; Gaderer R; Flipphi M; Seidl-Seiboth V
    Mol Microbiol; 2016 Feb; 99(4):640-57. PubMed ID: 26481444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of transcription factor CaNdt80p in cell separation, hyphal growth, and virulence in Candida albicans.
    Sellam A; Askew C; Epp E; Tebbji F; Mullick A; Whiteway M; Nantel A
    Eukaryot Cell; 2010 Apr; 9(4):634-44. PubMed ID: 20097739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The transcription factor Ndt80 does not contribute to Mrr1-, Tac1-, and Upc2-mediated fluconazole resistance in Candida albicans.
    Sasse C; Schillig R; Dierolf F; Weyler M; Schneider S; Mogavero S; Rogers PD; Morschhäuser J
    PLoS One; 2011; 6(9):e25623. PubMed ID: 21980509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. cAMP-independent signal pathways stimulate hyphal morphogenesis in Candida albicans.
    Parrino SM; Si H; Naseem S; Groudan K; Gardin J; Konopka JB
    Mol Microbiol; 2017 Mar; 103(5):764-779. PubMed ID: 27888610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of Candida albicans Sfl1 in hyphal development.
    Li Y; Su C; Mao X; Cao F; Chen J
    Eukaryot Cell; 2007 Nov; 6(11):2112-21. PubMed ID: 17715361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endosomal and AP-3-dependent vacuolar trafficking routes make additive contributions to Candida albicans hyphal growth and pathogenesis.
    Palmer GE
    Eukaryot Cell; 2010 Nov; 9(11):1755-65. PubMed ID: 20870878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyphal growth in Candida albicans does not require induction of hyphal-specific gene expression.
    Naseem S; Araya E; Konopka JB
    Mol Biol Cell; 2015 Mar; 26(6):1174-87. PubMed ID: 25609092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-acetylglucosamine (GlcNAc) induction of hyphal morphogenesis and transcriptional responses in Candida albicans are not dependent on its metabolism.
    Naseem S; Gunasekera A; Araya E; Konopka JB
    J Biol Chem; 2011 Aug; 286(33):28671-28680. PubMed ID: 21700702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Flo8 transcription factor is essential for hyphal development and virulence in Candida albicans.
    Cao F; Lane S; Raniga PP; Lu Y; Zhou Z; Ramon K; Chen J; Liu H
    Mol Biol Cell; 2006 Jan; 17(1):295-307. PubMed ID: 16267276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Candida albicans hyphal formation and the expression of the Efg1-regulated proteinases Sap4 to Sap6 are required for the invasion of parenchymal organs.
    Felk A; Kretschmar M; Albrecht A; Schaller M; Beinhauer S; Nichterlein T; Sanglard D; Korting HC; Schäfer W; Hube B
    Infect Immun; 2002 Jul; 70(7):3689-700. PubMed ID: 12065511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ssn6, an important factor of morphological conversion and virulence in Candida albicans.
    Hwang CS; Oh JH; Huh WK; Yim HS; Kang SO
    Mol Microbiol; 2003 Feb; 47(4):1029-43. PubMed ID: 12581357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional Portrait of Irf1 (Orf19.217), a Regulator of Morphogenesis and Iron Homeostasis in
    van Wijlick L; Znaidi S; Hernández-Cervantes A; Basso V; Bachellier-Bassi S; d'Enfert C
    Front Cell Infect Microbiol; 2022; 12():960884. PubMed ID: 36004328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-acetylglucosamine Signaling: Transcriptional Dynamics of a Novel Sugar Sensing Cascade in a Model Pathogenic Yeast,
    Hanumantha Rao K; Paul S; Ghosh S
    J Fungi (Basel); 2021 Jan; 7(1):. PubMed ID: 33477740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyphal induction under the condition without inoculation in Candida albicans is triggered by Brg1-mediated removal of NRG1 inhibition.
    Su C; Yu J; Sun Q; Liu Q; Lu Y
    Mol Microbiol; 2018 May; 108(4):410-423. PubMed ID: 29485686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The two-component response regulator Skn7 belongs to a network of transcription factors regulating morphogenesis in Candida albicans and independently limits morphogenesis-induced ROS accumulation.
    Basso V; Znaidi S; Lagage V; Cabral V; Schoenherr F; LeibundGut-Landmann S; d'Enfert C; Bachellier-Bassi S
    Mol Microbiol; 2017 Oct; 106(1):157-182. PubMed ID: 28752552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roles of Candida albicans Gat2, a GATA-type zinc finger transcription factor, in biofilm formation, filamentous growth and virulence.
    Du H; Guan G; Xie J; Sun Y; Tong Y; Zhang L; Huang G
    PLoS One; 2012; 7(1):e29707. PubMed ID: 22276126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.