BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

682 related articles for article (PubMed ID: 30464214)

  • 1. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments.
    Hughes CS; Moggridge S; Müller T; Sorensen PH; Morin GB; Krijgsveld J
    Nat Protoc; 2019 Jan; 14(1):68-85. PubMed ID: 30464214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extending the Compatibility of the SP3 Paramagnetic Bead Processing Approach for Proteomics.
    Moggridge S; Sorensen PH; Morin GB; Hughes CS
    J Proteome Res; 2018 Apr; 17(4):1730-1740. PubMed ID: 29565595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solvent Precipitation SP3 (SP4) Enhances Recovery for Proteomics Sample Preparation without Magnetic Beads.
    Johnston HE; Yadav K; Kirkpatrick JM; Biggs GS; Oxley D; Kramer HB; Samant RS
    Anal Chem; 2022 Jul; 94(29):10320-10328. PubMed ID: 35848328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Miniaturized sample preparation on a digital microfluidics device for sensitive bottom-up microproteomics of mammalian cells using magnetic beads and mass spectrometry-compatible surfactants.
    Leipert J; Tholey A
    Lab Chip; 2019 Oct; 19(20):3490-3498. PubMed ID: 31531506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of FASP, SP3, and iST Protocols for Proteomic Sample Preparation in the Low Microgram Range.
    Sielaff M; Kuharev J; Bohn T; Hahlbrock J; Bopp T; Tenzer S; Distler U
    J Proteome Res; 2017 Nov; 16(11):4060-4072. PubMed ID: 28948796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasensitive proteome analysis using paramagnetic bead technology.
    Hughes CS; Foehr S; Garfield DA; Furlong EE; Steinmetz LM; Krijgsveld J
    Mol Syst Biol; 2014 Oct; 10(10):757. PubMed ID: 25358341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suspension Trapping (S-Trap) Is Compatible with Typical Protein Extraction Buffers and Detergents for Bottom-Up Proteomics.
    Elinger D; Gabashvili A; Levin Y
    J Proteome Res; 2019 Mar; 18(3):1441-1445. PubMed ID: 30761899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Fast and Economical Sample Preparation Protocol for Interaction Proteomics Analysis.
    Gonzalez-Lozano MA; Koopmans F; Paliukhovich I; Smit AB; Li KW
    Proteomics; 2019 May; 19(9):e1900027. PubMed ID: 30864274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carboxylate-Modified Magnetic Bead (CMMB)-Based Isopropanol Gradient Peptide Fractionation (CIF) Enables Rapid and Robust Off-Line Peptide Mixture Fractionation in Bottom-Up Proteomics.
    Deng W; Sha J; Plath K; Wohlschlegel JA
    Mol Cell Proteomics; 2021; 20():100039. PubMed ID: 33476790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sample Preparation by Easy Extraction and Digestion (SPEED) - A Universal, Rapid, and Detergent-free Protocol for Proteomics Based on Acid Extraction.
    Doellinger J; Schneider A; Hoeller M; Lasch P
    Mol Cell Proteomics; 2020 Jan; 19(1):209-222. PubMed ID: 31754045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SP3 Protocol for Proteomic Plant Sample Preparation Prior LC-MS/MS.
    Mikulášek K; Konečná H; Potěšil D; Holánková R; Havliš J; Zdráhal Z
    Front Plant Sci; 2021; 12():635550. PubMed ID: 33777071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Straightforward Protocol for Gel-Free Proteomic Analysis of Adipose Tissue.
    Pasing Y; Schniers A; Hansen T
    Methods Mol Biol; 2018; 1788():289-296. PubMed ID: 28980277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Universal Solid-Phase Protein Preparation (USP
    Dagley LF; Infusini G; Larsen RH; Sandow JJ; Webb AI
    J Proteome Res; 2019 Jul; 18(7):2915-2924. PubMed ID: 31137935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SP3-FAIMS-Enabled High-Throughput Quantitative Profiling of the Cysteinome.
    Desai HS; Yan T; Backus KM
    Curr Protoc; 2022 Jul; 2(7):e492. PubMed ID: 35895291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Different Sample Preparation Protocols Reveals Lysis Buffer-Specific Extraction Biases in Gram-Negative Bacteria and Human Cells.
    Glatter T; Ahrné E; Schmidt A
    J Proteome Res; 2015 Nov; 14(11):4472-85. PubMed ID: 26412744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Standardized and Reproducible Proteomics Protocol for Bottom-Up Quantitative Analysis of Protein Samples Using SP3 and Mass Spectrometry.
    Hughes CS; Sorensen PH; Morin GB
    Methods Mol Biol; 2019; 1959():65-87. PubMed ID: 30852816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An IonStar Experimental Strategy for MS1 Ion Current-Based Quantification Using Ultrahigh-Field Orbitrap: Reproducible, In-Depth, and Accurate Protein Measurement in Large Cohorts.
    Shen X; Shen S; Li J; Hu Q; Nie L; Tu C; Wang X; Orsburn B; Wang J; Qu J
    J Proteome Res; 2017 Jul; 16(7):2445-2456. PubMed ID: 28412812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human Bone Paleoproteomics Utilizing the Single-Pot, Solid-Phase-Enhanced Sample Preparation Method to Maximize Detected Proteins and Reduce Humics.
    Cleland TP
    J Proteome Res; 2018 Nov; 17(11):3976-3983. PubMed ID: 30336043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in Protein Capture by SP3 and SP4 Demonstrate Mechanistic Insights of Proteomics Clean-up Techniques.
    Conforti JM; Ziegler AM; Worth CS; Nambiar AM; Bailey JT; Taube JH; Gallagher ES
    bioRxiv; 2024 Mar; ():. PubMed ID: 38559195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced FASP (eFASP) to increase proteome coverage and sample recovery for quantitative proteomic experiments.
    Erde J; Loo RR; Loo JA
    J Proteome Res; 2014 Apr; 13(4):1885-95. PubMed ID: 24552128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.