BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 30464297)

  • 21. Molecular evidence that plastids in the toxin-producing dinoflagellate genus Dinophysis originate from the free-living cryptophyte Teleaulax amphioxeia.
    Janson S
    Environ Microbiol; 2004 Oct; 6(10):1102-6. PubMed ID: 15344936
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Notes on the Cultivation of Two Mixotrophic
    Hernández-Urcera J; Rial P; García-Portela M; Lourés P; Kilcoyne J; Rodríguez F; Fernández-Villamarín A; Reguera B
    Toxins (Basel); 2018 Dec; 10(12):. PubMed ID: 30513751
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Phylogenomic Approach to Clarifying the Relationship of Mesodinium within the Ciliophora: A Case Study in the Complexity of Mixed-Species Transcriptome Analyses.
    Lasek-Nesselquist E; Johnson MD
    Genome Biol Evol; 2019 Nov; 11(11):3218-3232. PubMed ID: 31665294
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Plastid Genome of the Cryptomonad Teleaulax amphioxeia.
    Kim JI; Yoon HS; Yi G; Kim HS; Yih W; Shin W
    PLoS One; 2015; 10(6):e0129284. PubMed ID: 26047475
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DINOPHYSIS CAUDATA (DINOPHYCEAE) SEQUESTERS AND RETAINS PLASTIDS FROM THE MIXOTROPHIC CILIATE PREY MESODINIUM RUBRUM(1).
    Kim M; Nam SW; Shin W; Coats DW; Park MG
    J Phycol; 2012 Jun; 48(3):569-79. PubMed ID: 27011072
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heterosigma akashiwo does not serve as prey and chloroplast donor for the toxic dinoflagellate, Dinophysis acuminata.
    Williams AK; Marchand SL; Whereat E; Pettay DT; Coyne KJ
    Harmful Algae; 2022 Jan; 111():102168. PubMed ID: 35016772
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Insights into transcriptional changes that accompany organelle sequestration from the stolen nucleus of Mesodinium rubrum.
    Lasek-Nesselquist E; Wisecaver JH; Hackett JD; Johnson MD
    BMC Genomics; 2015 Oct; 16():805. PubMed ID: 26475598
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physiological Responses of Mesodinium major to Irradiance, Prey Concentration and Prey Starvation.
    Drumm K; Norlin A; Kim M; Altenburger A; Juel Hansen P
    J Eukaryot Microbiol; 2021 Apr; ():e12854. PubMed ID: 33866638
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mixotrophy in the marine red-tide cryptophyte Teleaulax amphioxeia and ingestion and grazing impact of cryptophytes on natural populations of bacteria in Korean coastal waters.
    Yoo YD; Seong KA; Jeong HJ; Yih W; Rho JR; Nam SW; Kim HS
    Harmful Algae; 2017 Sep; 68():105-117. PubMed ID: 28962973
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative mitochondrial genomics of cryptophyte algae: gene shuffling and dynamic mobile genetic elements.
    Kim JI; Yoon HS; Yi G; Shin W; Archibald JM
    BMC Genomics; 2018 Apr; 19(1):275. PubMed ID: 29678149
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evolutionary Dynamics of Cryptophyte Plastid Genomes.
    Kim JI; Moore CE; Archibald JM; Bhattacharya D; Yi G; Yoon HS; Shin W
    Genome Biol Evol; 2017 Jul; 9(7):1859-1872. PubMed ID: 28854597
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamics of Sequestered Cryptophyte Nuclei in
    Kim M; Drumm K; Daugbjerg N; Hansen PJ
    Front Microbiol; 2017; 8():423. PubMed ID: 28377747
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phylogeny of intestinal ciliates, including Charonina ventriculi, and comparison of microscopy and 18S rRNA gene pyrosequencing for rumen ciliate community structure analysis.
    Kittelmann S; Devente SR; Kirk MR; Seedorf H; Dehority BA; Janssen PH
    Appl Environ Microbiol; 2015 Apr; 81(7):2433-44. PubMed ID: 25616800
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The morphology, ontogeny, and small subunit rRNA gene sequence analysis of Diophrys parappendiculata n. sp. (Protozoa, Ciliophora, Euplotida), a new marine ciliate from coastal waters of southern China.
    Shen Z; Yi Z; Warren A
    J Eukaryot Microbiol; 2011; 58(3):242-8. PubMed ID: 21449957
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New Primers Targeting Full-Length Ciliate 18S rRNA Genes and Evaluation of Dietary Effect on Rumen Ciliate Diversity in Dairy Cows.
    Zhang J; Zhao S; Zhang Y; Sun P; Bu D; Wang J
    Curr Microbiol; 2015 Dec; 71(6):650-7. PubMed ID: 26319789
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcriptome analysis reveals nuclear-encoded proteins for the maintenance of temporary plastids in the dinoflagellate Dinophysis acuminata.
    Wisecaver JH; Hackett JD
    BMC Genomics; 2010 Jun; 11():366. PubMed ID: 20537123
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Osmotolerance in the Cryptophyceae: jacks-of-all-trades in the Chroomonas Clade.
    Hoef-Emden K
    Protist; 2014 Mar; 165(2):123-43. PubMed ID: 24568876
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Retention of transcriptionally active cryptophyte nuclei by the ciliate Myrionecta rubra.
    Johnson MD; Oldach D; Delwiche CF; Stoecker DK
    Nature; 2007 Jan; 445(7126):426-8. PubMed ID: 17251979
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phylogeny of the order Tintinnida (Ciliophora, Spirotrichea) inferred from small- and large-subunit rRNA genes.
    Santoferrara LF; McManus GB; Alder VA
    J Eukaryot Microbiol; 2012; 59(4):423-6. PubMed ID: 22624498
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cascading effects of prey identity on gene expression in a kleptoplastidic ciliate.
    Paight C; Johnson MD; Lasek-Nesselquist E; Moeller HV
    J Eukaryot Microbiol; 2023 Jan; 70(1):e12940. PubMed ID: 35975609
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.