These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 30464653)
1. Porous titanium-coated polyetheretherketone implants exhibit an improved bone-implant interface: an in vitro and in vivo biochemical, biomechanical, and histological study. Cheng BC; Koduri S; Wing CA; Woolery N; Cook DJ; Spiro RC Med Devices (Auckl); 2018; 11():391-402. PubMed ID: 30464653 [TBL] [Abstract][Full Text] [Related]
2. Porous PEEK improves the bone-implant interface compared to plasma-sprayed titanium coating on PEEK. Torstrick FB; Lin ASP; Potter D; Safranski DL; Sulchek TA; Gall K; Guldberg RE Biomaterials; 2018 Dec; 185():106-116. PubMed ID: 30236838 [TBL] [Abstract][Full Text] [Related]
3. A comparative study of three biomaterials in an ovine bone defect model. Cheng BC; Jaffee S; Averick S; Swink I; Horvath S; Zhukauskas R Spine J; 2020 Mar; 20(3):457-464. PubMed ID: 31626979 [TBL] [Abstract][Full Text] [Related]
4. An investigational time course study of titanium plasma spray on osseointegration of PEEK and titanium implants: an in vivo ovine model. Cunningham BW; Brooks DM; Rolle NP; Weiner DA; Wang W Spine J; 2024 Apr; 24(4):721-729. PubMed ID: 37875243 [TBL] [Abstract][Full Text] [Related]
5. Effect of porous orthopaedic implant material and structure on load sharing with simulated bone ingrowth: A finite element analysis comparing titanium and PEEK. Carpenter RD; Klosterhoff BS; Torstrick FB; Foley KT; Burkus JK; Lee CSD; Gall K; Guldberg RE; Safranski DL J Mech Behav Biomed Mater; 2018 Apr; 80():68-76. PubMed ID: 29414477 [TBL] [Abstract][Full Text] [Related]
6. Vacuum plasma sprayed porous titanium coating on polyetheretherketone for ACDF improves the osteogenic ability: An in vitro and in vivo study. Liu C; Zhang Y; Xiao L; Ge X; Öner FC; Xu H Biomed Microdevices; 2021 Apr; 23(2):21. PubMed ID: 33821351 [TBL] [Abstract][Full Text] [Related]
7. Bony ingrowth potential of 3D-printed porous titanium alloy: a direct comparison of interbody cage materials in an in vivo ovine lumbar fusion model. McGilvray KC; Easley J; Seim HB; Regan D; Berven SH; Hsu WK; Mroz TE; Puttlitz CM Spine J; 2018 Jul; 18(7):1250-1260. PubMed ID: 29496624 [TBL] [Abstract][Full Text] [Related]
8. Biomechanical and histomorphometric evaluation of skin integration on titanium and PEEK implants with different surface treatments. Kjellin P; Danielsson K; Håkansson J; Agrenius K; Andersson T; Stenlund P J Mater Sci Mater Med; 2022 Sep; 33(10):68. PubMed ID: 36178551 [TBL] [Abstract][Full Text] [Related]
9. PEEK Versus Ti Interbody Fusion Devices: Resultant Fusion, Bone Apposition, Initial and 26-Week Biomechanics. Pelletier MH; Cordaro N; Punjabi VM; Waites M; Lau A; Walsh WR Clin Spine Surg; 2016 May; 29(4):E208-14. PubMed ID: 22801456 [TBL] [Abstract][Full Text] [Related]
11. In Vivo Osseointegration Performance of Titanium Dioxide Coating Modified Polyetheretherketone Using Arc Ion Plating for Spinal Implant Application. Tsou HK; Chi MH; Hung YW; Chung CJ; He JL Biomed Res Int; 2015; 2015():328943. PubMed ID: 26504800 [TBL] [Abstract][Full Text] [Related]
12. The in vivo response to a novel Ti coating compared with polyether ether ketone: evaluation of the periphery and inner surfaces of an implant. Walsh WR; Pelletier MH; Christou C; He J; Vizesi F; Boden SD Spine J; 2018 Jul; 18(7):1231-1240. PubMed ID: 29496625 [TBL] [Abstract][Full Text] [Related]
13. Comparison in the same intervertebral space between titanium-coated and uncoated PEEK cages in lumbar interbody fusion surgery. Kashii M; Kitaguchi K; Makino T; Kaito T J Orthop Sci; 2020 Jul; 25(4):565-570. PubMed ID: 31375363 [TBL] [Abstract][Full Text] [Related]
14. Evaluating Osseointegration Into a Deeply Porous Titanium Scaffold: A Biomechanical Comparison With PEEK and Allograft. Guyer RD; Abitbol JJ; Ohnmeiss DD; Yao C Spine (Phila Pa 1976); 2016 Oct; 41(19):E1146-E1150. PubMed ID: 27135643 [TBL] [Abstract][Full Text] [Related]
16. Comparison of 3D-printed titanium-alloy, standard titanium-alloy, and PEEK interbody spacers in an ovine model. Van Horn MR; Beard R; Wang W; Cunningham BW; Mullinix KP; Allall M; Bucklen BS Spine J; 2021 Dec; 21(12):2097-2103. PubMed ID: 34029756 [TBL] [Abstract][Full Text] [Related]
17. Getting PEEK to Stick to Bone: The Development of Porous PEEK for Interbody Fusion Devices. Torstrick FB; Safranski DL; Burkus JK; Chappuis JL; Lee CSD; Guldberg RE; Gall K; Smith KE Tech Orthop; 2017 Sep; 32(3):158-166. PubMed ID: 29225416 [TBL] [Abstract][Full Text] [Related]
18. Effects of Titanium Implant Surface Topology on Bone Cell Attachment and Proliferation in vitro. Levin M; Spiro RC; Jain H; Falk MM Med Devices (Auckl); 2022; 15():103-119. PubMed ID: 35502265 [TBL] [Abstract][Full Text] [Related]
19. In vivo experimental study of anterior cervical fusion using bioactive polyetheretherketone in a canine model. Shimizu T; Fujibayashi S; Yamaguchi S; Otsuki B; Okuzu Y; Matsushita T; Kokubo T; Matsuda S PLoS One; 2017; 12(9):e0184495. PubMed ID: 28886118 [TBL] [Abstract][Full Text] [Related]
20. Optimizing the Spinal Interbody Implant: Current Advances in Material Modification and Surface Treatment Technologies. Park PJ; Lehman RA Curr Rev Musculoskelet Med; 2020 Dec; 13(6):688-695. PubMed ID: 32816234 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]