These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 30464851)

  • 1. Multiuser virtual reality environment for visualising neuroimaging data.
    Shattuck DW
    Healthc Technol Lett; 2018 Oct; 5(5):183-188. PubMed ID: 30464851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HTC Vive MeVisLab integration via OpenVR for medical applications.
    Egger J; Gall M; Wallner J; Boechat P; Hann A; Li X; Chen X; Schmalstieg D
    PLoS One; 2017; 12(3):e0173972. PubMed ID: 28323840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A quantitative method for evaluation of 6 degree of freedom virtual reality systems.
    Jost TA; Drewelow G; Koziol S; Rylander J
    J Biomech; 2019 Dec; 97():109379. PubMed ID: 31679757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Virtual interaction and visualisation of 3D medical imaging data with VTK and Unity.
    Wheeler G; Deng S; Toussaint N; Pushparajah K; Schnabel JA; Simpson JM; Gomez A
    Healthc Technol Lett; 2018 Oct; 5(5):148-153. PubMed ID: 30800321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mobilization and calibration of the HTC VIVE for virtual reality physical therapy.
    Hemphill S; Nguyen A; Rodriguez ST; Menendez M; Wang E; Lawrence K; Caruso TJ
    Digit Health; 2020; 6():2055207620950929. PubMed ID: 32963801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Journey to the centre of the cell: Virtual reality immersion into scientific data.
    Johnston APR; Rae J; Ariotti N; Bailey B; Lilja A; Webb R; Ferguson C; Maher S; Davis TP; Webb RI; McGhee J; Parton RG
    Traffic; 2018 Feb; 19(2):105-110. PubMed ID: 29159991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiological tele-immersion for next generation networks.
    Ai Z; Dech F; Rasmussen M; Silverstein JC
    Stud Health Technol Inform; 2000; 70():4-9. PubMed ID: 10977581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time visualization and interaction with static and live optical coherence tomography volumes in immersive virtual reality.
    Draelos M; Keller B; Viehland C; Carrasco-Zevallos OM; Kuo A; Izatt J
    Biomed Opt Express; 2018 Jun; 9(6):2825-2843. PubMed ID: 30258693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactive Molecular Graphics for Augmented Reality Using HoloLens.
    Müller C; Krone M; Huber M; Biener V; Herr D; Koch S; Reina G; Weiskopf D; Ertl T
    J Integr Bioinform; 2018 Jun; 15(2):. PubMed ID: 29897886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility of using a fully immersive virtual reality system for kinematic data collection.
    Spitzley KA; Karduna AR
    J Biomech; 2019 Apr; 87():172-176. PubMed ID: 30853091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Oculus Rift and HTC Vive: Feasibility for Virtual Reality-Based Exploration, Navigation, Exergaming, and Rehabilitation.
    Borrego A; Latorre J; Alcañiz M; Llorens R
    Games Health J; 2018 Jun; 7(3):151-156. PubMed ID: 29293369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virtual reality simulation training for health professions trainees in gastrointestinal endoscopy.
    Khan R; Plahouras J; Johnston BC; Scaffidi MA; Grover SC; Walsh CM
    Cochrane Database Syst Rev; 2018 Aug; 8(8):CD008237. PubMed ID: 30117156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Building virtual reality fMRI paradigms: a framework for presenting immersive virtual environments.
    Mueller C; Luehrs M; Baecke S; Adolf D; Luetzkendorf R; Luchtmann M; Bernarding J
    J Neurosci Methods; 2012 Aug; 209(2):290-8. PubMed ID: 22759716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitigating Cybersickness in Virtual Reality Systems through Foveated Depth-of-Field Blur.
    Hussain R; Chessa M; Solari F
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34200616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Digital restoration of fragmentary human skeletal remains: Testing the feasibility of virtual reality.
    Jurda M; Urbanová P; Chmelík J
    J Forensic Leg Med; 2019 Aug; 66():50-57. PubMed ID: 31220789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Gesture-Based Control System for Fluorescence Volumetric Data in Virtual Reality.
    Cmiel V; Chmelikova L; Zumberg I; Kralik M
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advancing Cardiac Surgery Case Planning and Case Review Conferences Using Virtual Reality in Medical Libraries: Evaluation of the Usability of Two Virtual Reality Apps.
    Napa S; Moore M; Bardyn T
    JMIR Hum Factors; 2019 Jan; 6(1):e12008. PubMed ID: 30664469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility and psychophysical effects of immersive virtual reality-based mirror therapy.
    Heinrich C; Morkisch N; Langlotz T; Regenbrecht H; Dohle C
    J Neuroeng Rehabil; 2022 Oct; 19(1):107. PubMed ID: 36207720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MeVisLab-OpenVR prototyping platform for virtual reality medical applications.
    De Buck S; Van De Bruaene A; Budts W; Suetens P
    Int J Comput Assist Radiol Surg; 2022 Nov; 17(11):2065-2069. PubMed ID: 35674999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ConfocalVR: Immersive Visualization for Confocal Microscopy.
    Stefani C; Lacy-Hulbert A; Skillman T
    J Mol Biol; 2018 Oct; 430(21):4028-4035. PubMed ID: 29949752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.