These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 30464942)

  • 41. Structure and performance of the LiFePO
    Hu J; Huang W; Yang L; Pan F
    Nanoscale; 2020 Jul; 12(28):15036-15044. PubMed ID: 32647852
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hierarchical Graphene-Scaffolded Silicon/Graphite Composites as High Performance Anodes for Lithium-Ion Batteries.
    Zhu S; Zhou J; Guan Y; Cai W; Zhao Y; Zhu Y; Zhu L; Zhu Y; Qian Y
    Small; 2018 Nov; 14(47):e1802457. PubMed ID: 30328267
    [TBL] [Abstract][Full Text] [Related]  

  • 43.
    Park JS; Jung Y; Kim S
    J Nanosci Nanotechnol; 2018 Jan; 18(1):44-47. PubMed ID: 29768809
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bouquet-Like Mn
    Rehman WU; Xu Y; Sun X; Ullah I; Zhang Y; Li L
    ACS Appl Mater Interfaces; 2018 May; 10(21):17963-17972. PubMed ID: 29737833
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A facile route to modify ferrous phosphate and its use as an iron-containing resource for LiFePO4 via a polyol process.
    Li S; Liu X; Mi R; Liu H; Li Y; Lau WM; Mei J
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9449-57. PubMed ID: 24858212
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hollow melon-seed-shaped lithium iron phosphate micro- and sub-micrometer plates for lithium-ion batteries.
    Yang XF; Yang JH; Zhong YL; Gariepy V; Trudeau ML; Zaghib K; Ying JY
    ChemSusChem; 2014 Jun; 7(6):1618-22. PubMed ID: 24700813
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Preparation of LiFePO₄/C Cathode Materials via a Green Synthesis Route for Lithium-Ion Battery Applications.
    Liu R; Chen J; Li Z; Ding Q; An X; Pan Y; Zheng Z; Yang M; Fu D
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30424540
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Boron and Nitrogen Codoped Carbon Layers of LiFePO4 Improve the High-Rate Electrochemical Performance for Lithium Ion Batteries.
    Zhang J; Nie N; Liu Y; Wang J; Yu F; Gu J; Li W
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20134-43. PubMed ID: 26305802
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Selective recovery of lithium and iron phosphate/carbon from spent lithium iron phosphate cathode material by anionic membrane slurry electrolysis.
    Li Z; Liu D; Xiong J; He L; Zhao Z; Wang D
    Waste Manag; 2020 Apr; 107():1-8. PubMed ID: 32248067
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Morphology-controlled synthesis of self-assembled LiFePO4/C/RGO for high-performance Li-ion batteries.
    Lin M; Chen Y; Chen B; Wu X; Kam K; Lu W; Chan HL; Yuan J
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17556-63. PubMed ID: 25233480
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optimization of multicomponent aqueous suspensions of lithium iron phosphate (LiFePO4) nanoparticles and carbon black for lithium-ion battery cathodes.
    Li J; Armstrong BL; Daniel C; Kiggans J; Wood DL
    J Colloid Interface Sci; 2013 Sep; 405():118-24. PubMed ID: 23764234
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Preparation of V-Doped LiFePO4/C as the Optimized Cathode Material for Lithium Ion Batteries.
    Sun P; Zhang H; Shen K; Fan Q; Xu Q
    J Nanosci Nanotechnol; 2015 Apr; 15(4):2667-72. PubMed ID: 26353479
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Controllable Self-Assembly of Micro-Nanostructured Si-Embedded Graphite/Graphene Composite Anode for High-Performance Li-Ion Batteries.
    Lin N; Xu T; Li T; Han Y; Qian Y
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39318-39325. PubMed ID: 29058864
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Graphene-like MoS₂/graphene composites: cationic surfactant-assisted hydrothermal synthesis and electrochemical reversible storage of lithium.
    Huang G; Chen T; Chen W; Wang Z; Chang K; Ma L; Huang F; Chen D; Lee JY
    Small; 2013 Nov; 9(21):3693-703. PubMed ID: 23766240
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In situ atomic force microscopy analysis of morphology and particle size changes in lithium iron phosphate cathode during discharge.
    Demirocak DE; Bhushan B
    J Colloid Interface Sci; 2014 Jun; 423():151-7. PubMed ID: 24703680
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Scalable, Large-Area Printing of Pore-Array Electrodes for Ultrahigh Power Electrochemical Energy Storage.
    Lee SH; Johnston C; Grant PS
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):37859-37866. PubMed ID: 31553158
    [TBL] [Abstract][Full Text] [Related]  

  • 57. X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell.
    Deb A; Bergmann U; Cairns EJ; Cramer SP
    J Synchrotron Radiat; 2004 Nov; 11(Pt 6):497-504. PubMed ID: 15496738
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nano/micro lithium transitionmetal (Fe, Mn, Co and Ni) silicate cathode materials for lithium ion batteries.
    Zhang Q; Zhao Y; Su C; Li M
    Recent Pat Nanotechnol; 2011 Nov; 5(3):225-33. PubMed ID: 21777180
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Self-Assembly of Antisite Defectless nano-LiFePO
    Wang H; Liu L; Wang R; Yan X; Wang Z; Hu J; Chen H; Jiang S; Ni L; Qiu H; Tang H; Wei Y; Zhang Z; Qiu S; Pan F
    ChemSusChem; 2018 Jul; 11(13):2255-2261. PubMed ID: 29775247
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Improved Electrochemical Performance of LiFePO
    Wang P; Zhang G; Li Z; Sheng W; Zhang Y; Gu J; Zheng X; Cao F
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):26908-26915. PubMed ID: 27661261
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.