These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 30464951)

  • 1. Rational Design of WO
    Liu Y; Jiao Y; Zhou H; Yu X; Qu F; Wu X
    Nanomicro Lett; 2015; 7(1):12-16. PubMed ID: 30464951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural Construction of WO
    Zhang Y; Zhu K; Li R; Zeng S; Wang L
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Architecting Hierarchical WO
    Dong X; Liu Y; Zhu S; Ou Y; Zhang X; Lan W; Guo H; Zhang C; Liu Z; Ju S; Miao Y; Zhang Y; Li H
    Front Chem; 2021; 9():834418. PubMed ID: 35186900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tungsten Trioxide (WO3) Nanoparticles as a New Anode Material for Sodium-Ion Batteries.
    Santhosha AL; Das SK; Bhattacharyya AJ
    J Nanosci Nanotechnol; 2016 Apr; 16(4):4131-5. PubMed ID: 27451776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Synthesis of Carbon-Doped TiO2-Bronze Nanowires as Anode Materials for High Performance Lithium-Ion Batteries.
    Goriparti S; Miele E; Prato M; Scarpellini A; Marras S; Monaco S; Toma A; Messina GC; Alabastri A; De Angelis F; Manna L; Capiglia C; Zaccaria RP
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25139-46. PubMed ID: 26492841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-recovery in Li-metal hybrid lithium-ion batteries via WO
    Pathak R; Gurung A; Elbohy H; Chen K; Reza KM; Bahrami B; Mabrouk S; Ghimire R; Hummel M; Gu Z; Wang X; Wu Y; Zhou Y; Qiao Q
    Nanoscale; 2018 Aug; 10(34):15956-15966. PubMed ID: 30132491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational Design of Graphene-Reinforced MnO Nanowires with Enhanced Electrochemical Performance for Li-Ion Batteries.
    Sun Q; Wang Z; Zhang Z; Yu Q; Qu Y; Zhang J; Yu Y; Xiang B
    ACS Appl Mater Interfaces; 2016 Mar; 8(10):6303-8. PubMed ID: 26894410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfur-Deficient Porous SnS
    Zhang L; Yao B; Sun C; Shi S; Xu W; Zhao K
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31963411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-situ one-step hydrothermal synthesis of a lead germanate-graphene composite as a novel anode material for lithium-ion batteries.
    Wang J; Feng CQ; Sun ZQ; Chou SL; Liu HK; Wang JZ
    Sci Rep; 2014 Nov; 4():7030. PubMed ID: 25391220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Study of Electrochemical Performance of SnO2 Anodes with Different Nanostructures for Lithium-Ion Batteries.
    Sun YH; Dong PP; Lang X; Chen HY; Nan JM
    J Nanosci Nanotechnol; 2015 Aug; 15(8):5880-8. PubMed ID: 26369165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TiO2 modified FeS nanostructures with enhanced electrochemical performance for lithium-ion batteries.
    Wang X; Xiang Q; Liu B; Wang L; Luo T; Chen D; Shen G
    Sci Rep; 2013; 3():2007. PubMed ID: 23774372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesoporous SnO2@carbon core-shell nanostructures with superior electrochemical performance for lithium ion batteries.
    Chen LB; Yin XM; Mei L; Li CC; Lei DN; Zhang M; Li QH; Xu Z; Xu CM; Wang TH
    Nanotechnology; 2012 Jan; 23(3):035402. PubMed ID: 22173372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Situ Synthesis of MnS Hollow Microspheres on Reduced Graphene Oxide Sheets as High-Capacity and Long-Life Anodes for Li- and Na-Ion Batteries.
    Xu X; Ji S; Gu M; Liu J
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20957-64. PubMed ID: 26336101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-step construction of hexagonal WO
    Dong F; Dong X; Fu C; Tao S; Li H; Zeng S; Wang L
    Phys Chem Chem Phys; 2023 Nov; 25(42):29341-29349. PubMed ID: 37877223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of one-dimensional copper sulfide nanorods as high-performance anode in lithium ion batteries.
    Li X; He X; Shi C; Liu B; Zhang Y; Wu S; Zhu Z; Zhao J
    ChemSusChem; 2014 Dec; 7(12):3328-33. PubMed ID: 25354020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid thermal deposited GeSe nanowires as a promising anode material for lithium-ion and sodium-ion batteries.
    Wang K; Liu M; Huang D; Li L; Feng K; Zhao L; Li J; Jiang F
    J Colloid Interface Sci; 2020 Jul; 571():387-397. PubMed ID: 32213356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile synthesis of Bi
    Zhai X; Gao J; Xue R; Xu X; Wang L; Tian Q; Liu Y
    J Colloid Interface Sci; 2018 May; 518():242-251. PubMed ID: 29471201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonstoichiometric Cu
    Li J; Jiang N; Liao J; Feng Y; Liu Q; Li H
    Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 31979008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CuGeO₃ nanowires covered with graphene as anode materials of lithium ion batteries with enhanced reversible capacity and cyclic performance.
    Wu S; Wang R; Wang Z; Lin Z
    Nanoscale; 2014 Jul; 6(14):8350-8. PubMed ID: 24934278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-energy lithium-ion hybrid supercapacitors composed of hierarchical urchin-like WO
    Xu J; Li Y; Wang L; Cai Q; Li Q; Gao B; Zhang X; Huo K; Chu PK
    Nanoscale; 2016 Sep; 8(37):16761-16768. PubMed ID: 27714151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.