These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 30465029)

  • 1. Energy efficient production of clay bricks using industrial waste.
    P N ML; Peter C; Mohan K; Greens S; George S
    Heliyon; 2018 Oct; 4(10):e00891. PubMed ID: 30465029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sustainable Use of Marble Waste in Industrial Production of Fired Clay Bricks and Its Employment for Treatment of Flue Gases.
    Ahmad S; Hassan Shah MU; Ullah A; Shah SN; Rehan MS; Khan IA; Ahmad MI
    ACS Omega; 2021 Sep; 6(35):22559-22569. PubMed ID: 34514228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manufacturing of Sustainable Untreated Coal Ash Masonry Units for Structural Applications.
    Abbass W; Abbas S; Aslam F; Ahmed A; Ahmed T; Hashir A; Mamdouh A
    Materials (Basel); 2022 Jun; 15(11):. PubMed ID: 35683300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and recycling of textile sludge for energy-efficient brick production in Ethiopia.
    Beshah DA; Tiruye GA; Mekonnen YS
    Environ Sci Pollut Res Int; 2021 Apr; 28(13):16272-16281. PubMed ID: 33387312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Sustainable Reuse of Agro-Industrial Wastes into Green Cement Bricks.
    Chin WQ; Lee YH; Amran M; Fediuk R; Vatin N; Kueh ABH; Lee YY
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of atmospheric emissions and energy metrics from simulated clamp kiln technology in the clay brick industry.
    Akinshipe O; Kornelius G
    Environ Pollut; 2018 May; 236():580-590. PubMed ID: 29428712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of using arsenic-iron sludge wastes in brick making.
    Hassan KM; Fukushi K; Turikuzzaman K; Moniruzzaman SM
    Waste Manag; 2014 Jun; 34(6):1072-8. PubMed ID: 24129213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sustainable use of tannery sludge in brick manufacturing in Bangladesh.
    Juel MAI; Mizan A; Ahmed T
    Waste Manag; 2017 Feb; 60():259-269. PubMed ID: 28081994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elucidating the effects of solar panel waste glass substitution on the physical and mechanical characteristics of clay bricks.
    Lin KL; Huang LS; Shie JL; Cheng CJ; Lee CH; Chang TC
    Environ Technol; 2013; 34(1-4):15-24. PubMed ID: 23530311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The reuse of waste glass for enhancement of heavy metals immobilization during the introduction of galvanized sludge in brick manufacturing.
    Mao L; Wu Y; Zhang W; Huang Q
    J Environ Manage; 2019 Feb; 231():780-787. PubMed ID: 30415171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eco-Friendly Fired Brick Produced from Industrial Ash and Natural Clay: A Study of Waste Reuse.
    Doğan-Sağlamtimur N; Bilgil A; Szechyńska-Hebda M; Parzych S; Hebda M
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33673275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of waste glass additions on quality of textile sludge-based bricks.
    Rahman A; Urabe T; Kishimoto N; Mizuhara S
    Environ Technol; 2015; 36(19):2443-50. PubMed ID: 25812619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of olive mill waste addition on the properties of porous fired clay bricks using Taguchi method.
    Sutcu M; Ozturk S; Yalamac E; Gencel O
    J Environ Manage; 2016 Oct; 181():185-192. PubMed ID: 27343435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving the Thermal Performance and Energy Efficiency of Buildings by Incorporating Biomass Waste into Clay Bricks.
    Ahmed S; El Attar ME; Zouli N; Abutaleb A; Maafa IM; Ahmed MM; Yousef A; Ragab A
    Materials (Basel); 2023 Apr; 16(7):. PubMed ID: 37049187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of recycled glass substitution on the physical and mechanical properties of clay bricks.
    Loryuenyong V; Panyachai T; Kaewsimork K; Siritai C
    Waste Manag; 2009 Oct; 29(10):2717-21. PubMed ID: 19545990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of bottom ash from olive pomace combustion in the production of eco-friendly fired clay bricks.
    Eliche-Quesada D; Leite-Costa J
    Waste Manag; 2016 Feb; 48():323-333. PubMed ID: 26653359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards zero industrial waste: Utilisation of brick dust waste in sustainable construction.
    Kinuthia JM; Nidzam RM
    Waste Manag; 2011 Aug; 31(8):1867-78. PubMed ID: 21550223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of MRF residue as alternative fuel in cement production.
    Fyffe JR; Breckel AC; Townsend AK; Webber ME
    Waste Manag; 2016 Jan; 47(Pt B):276-84. PubMed ID: 26187294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reuse of walnut shell waste in the development of fired ceramic bricks.
    Barnabas AA; Balogun OA; Akinwande AA; Ogbodo JF; Ademati AO; Dongo EI; Romanovski V
    Environ Sci Pollut Res Int; 2023 Jan; 30(5):11823-11837. PubMed ID: 36098915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response surface methodology-based optimisation of cost and compressive strength of rubberised concrete incorporating burnt clay brick powder.
    Sinkhonde D; Onchiri RO; Oyawa WO; Mwero JN
    Heliyon; 2021 Dec; 7(12):e08565. PubMed ID: 34917825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.